On conditions for asymptotic stability of dissipative infinite-dimensional systems with intermittent damping

We study the asymptotic stability of a dissipative evolution in a Hilbert space subject to intermittent damping. We observe that, even if the intermittence satisfies a persistent excitation condition, if the Hilbert space is infinite-dimensional then the system needs not being asymptotically stable (n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hante, Falk Michael (VerfasserIn) , Sigalotti, Mario (VerfasserIn) , Tucsnak, Marius (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 16 February 2012
In: Journal of differential equations
Year: 2012, Jahrgang: 252, Heft: 10, Pages: 5569-5593
ISSN:1090-2732
DOI:10.1016/j.jde.2012.01.037
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1016/j.jde.2012.01.037
Verlag, Volltext: http://linkinghub.elsevier.com/retrieve/pii/S0022039612000617
Volltext
Verfasserangaben:Falk M. Hante, Mario Sigalotti, Marius Tucsnak

MARC

LEADER 00000caa a2200000 c 4500
001 1578261651
003 DE-627
005 20220814205909.0
007 cr uuu---uuuuu
008 180806s2012 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.jde.2012.01.037  |2 doi 
035 |a (DE-627)1578261651 
035 |a (DE-576)508261651 
035 |a (DE-599)BSZ508261651 
035 |a (OCoLC)1341015010 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Hante, Falk Michael  |e VerfasserIn  |0 (DE-588)142268720  |0 (DE-627)635208695  |0 (DE-576)32981852X  |4 aut 
245 1 0 |a On conditions for asymptotic stability of dissipative infinite-dimensional systems with intermittent damping  |c Falk M. Hante, Mario Sigalotti, Marius Tucsnak 
264 1 |c 16 February 2012 
300 |a 25 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Available online16 February 2012 
500 |a Gesehen am 06.08.2018 
520 |a We study the asymptotic stability of a dissipative evolution in a Hilbert space subject to intermittent damping. We observe that, even if the intermittence satisfies a persistent excitation condition, if the Hilbert space is infinite-dimensional then the system needs not being asymptotically stable (not even in the weak sense). Exponential stability is recovered under a generalized observability inequality, allowing for time-domains that are not intervals. Weak asymptotic stability is obtained under a similarly generalized unique continuation principle. Finally, strong asymptotic stability is proved for intermittences that do not necessarily satisfy some persistent excitation condition, evaluating their total contribution to the decay of the trajectories of the damped system. Our results are discussed using the example of the wave equation, Schrödinger’s equation and, for strong stability, also the special case of finite-dimensional systems. 
700 1 |a Sigalotti, Mario  |e VerfasserIn  |0 (DE-588)1120041708  |0 (DE-627)873160371  |0 (DE-576)480111227  |4 aut 
700 1 |a Tucsnak, Marius  |e VerfasserIn  |0 (DE-588)103140693X  |0 (DE-627)736370781  |0 (DE-576)378853171  |4 aut 
773 0 8 |i Enthalten in  |t Journal of differential equations  |d Orlando, Fla. : Elsevier, 1965  |g 252(2012), 10, Seite 5569-5593  |h Online-Ressource  |w (DE-627)266892566  |w (DE-600)1469173-5  |w (DE-576)103373209  |x 1090-2732  |7 nnas  |a On conditions for asymptotic stability of dissipative infinite-dimensional systems with intermittent damping 
773 1 8 |g volume:252  |g year:2012  |g number:10  |g pages:5569-5593  |g extent:25  |a On conditions for asymptotic stability of dissipative infinite-dimensional systems with intermittent damping 
856 4 0 |u http://dx.doi.org/10.1016/j.jde.2012.01.037  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u http://linkinghub.elsevier.com/retrieve/pii/S0022039612000617  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20180806 
993 |a Article 
994 |a 2012 
998 |g 142268720  |a Hante, Falk Michael  |m 142268720:Hante, Falk Michael  |d 700000  |d 708000  |e 700000PH142268720  |e 708000PH142268720  |k 0/700000/  |k 1/700000/708000/  |p 1  |x j 
999 |a KXP-PPN1578261651  |e 3020239591 
BIB |a Y 
SER |a journal 
JSO |a {"origin":[{"dateIssuedKey":"2012","dateIssuedDisp":"16 February 2012"}],"id":{"eki":["1578261651"],"doi":["10.1016/j.jde.2012.01.037"]},"name":{"displayForm":["Falk M. Hante, Mario Sigalotti, Marius Tucsnak"]},"physDesc":[{"extent":"25 S."}],"relHost":[{"title":[{"title_sort":"Journal of differential equations","title":"Journal of differential equations"}],"part":{"extent":"25","text":"252(2012), 10, Seite 5569-5593","volume":"252","issue":"10","pages":"5569-5593","year":"2012"},"pubHistory":["1.1965 -"],"language":["eng"],"recId":"266892566","note":["Gesehen am 16.07.13"],"type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"On conditions for asymptotic stability of dissipative infinite-dimensional systems with intermittent dampingJournal of differential equations","id":{"issn":["1090-2732"],"eki":["266892566"],"zdb":["1469173-5"]},"origin":[{"dateIssuedKey":"1965","publisher":"Elsevier ; Academic Press ; Academic Press","dateIssuedDisp":"1965-","publisherPlace":"Orlando, Fla. ; New York, NY [u.a.] ; Orlando, Fla."}],"physDesc":[{"extent":"Online-Ressource"}]}],"title":[{"title_sort":"On conditions for asymptotic stability of dissipative infinite-dimensional systems with intermittent damping","title":"On conditions for asymptotic stability of dissipative infinite-dimensional systems with intermittent damping"}],"person":[{"given":"Falk Michael","family":"Hante","role":"aut","roleDisplay":"VerfasserIn","display":"Hante, Falk Michael"},{"roleDisplay":"VerfasserIn","display":"Sigalotti, Mario","role":"aut","family":"Sigalotti","given":"Mario"},{"role":"aut","display":"Tucsnak, Marius","roleDisplay":"VerfasserIn","given":"Marius","family":"Tucsnak"}],"note":["Available online16 February 2012","Gesehen am 06.08.2018"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"language":["eng"],"recId":"1578261651"} 
SRT |a HANTEFALKMONCONDITIO1620