Periodic points and automorphisms of the shift

The automorphism group of a topological Markov shift is studied by way of periodic points and unstable sets. A new invariant for automorphisms of dynamical systems, the gyration function, is used to characterize those automorphisms of finite subsystems of the full shift on symbols which can be exten...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Boyle, McBlaine Michael (VerfasserIn) , Krieger, Wolfgang (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 1987
In: Transactions of the American Mathematical Society
Year: 1987, Jahrgang: 302, Heft: 1, Pages: 125-149
ISSN:1088-6850
DOI:10.1090/S0002-9947-1987-0887501-5
Online-Zugang:Resolving-System, kostenfrei, Volltext: http://dx.doi.org/10.1090/S0002-9947-1987-0887501-5
Verlag, kostenfrei, Volltext: http://www.ams.org/journals/tran/1987-302-01/S0002-9947-1987-0887501-5/
Volltext
Verfasserangaben:Mike Boyle and Wolfgang Krieger
Beschreibung
Zusammenfassung:The automorphism group of a topological Markov shift is studied by way of periodic points and unstable sets. A new invariant for automorphisms of dynamical systems, the gyration function, is used to characterize those automorphisms of finite subsystems of the full shift on symbols which can be extended to a composition of involutions of the shift.
Beschreibung:Gesehen am 10.08.2018
Beschreibung:Online Resource
ISSN:1088-6850
DOI:10.1090/S0002-9947-1987-0887501-5