Measure space automorphisms, the normalizers of their full groups, and approximate finiteness

We deal with the normalizer N[T] of the full group [T] of a nonsingular transformation T of a Lebesgue measure space in the group of all nonsingular transformations. We solve the conjugacy problem in N[T]/[T] for a measure preserving and ergodic T. Our results show that a locally finite extension of...

Full description

Saved in:
Bibliographic Details
Main Authors: Connes, Alain (Author) , Krieger, Wolfgang (Author)
Format: Article (Journal)
Language:English
Published: 30 June 2004
In: Journal of functional analysis
Year: 1977, Volume: 24, Issue: 4, Pages: 336-352
ISSN:1096-0783
DOI:10.1016/0022-1236(77)90062-3
Online Access:Resolving-System, kostenfrei, Volltext: http://dx.doi.org/10.1016/0022-1236(77)90062-3
Verlag, kostenfrei, Volltext: http://www.sciencedirect.com/science/article/pii/0022123677900623
Get full text
Author Notes:Alain Connes and Wolfgang Krieger
Description
Summary:We deal with the normalizer N[T] of the full group [T] of a nonsingular transformation T of a Lebesgue measure space in the group of all nonsingular transformations. We solve the conjugacy problem in N[T]/[T] for a measure preserving and ergodic T. Our results show that a locally finite extension of a solvable group is approximately finite.
Item Description:Available online 30 June 2004
Gesehen am 10.08.2018
Physical Description:Online Resource
ISSN:1096-0783
DOI:10.1016/0022-1236(77)90062-3