Relative concave utility for risk and ambiguity

This paper presents a general technique for comparing the concavity of different utility functions when probabilities need not be known. It generalizes: (a) Yaariʼs comparisons of risk aversion by not requiring identical beliefs; (b) Kreps and Porteusʼ information-timing preference by not requiring...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Baillon, Aurélien (VerfasserIn) , Driesen, Bram (VerfasserIn) , Wakker, Peter P. (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 23 February 2012
In: Games and economic behavior
Year: 2012, Jahrgang: 75, Heft: 2, Pages: 481-489
ISSN:1090-2473
DOI:10.1016/j.geb.2012.01.006
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1016/j.geb.2012.01.006
Verlag, Volltext: http://www.sciencedirect.com/science/article/pii/S0899825612000097
Volltext
Verfasserangaben:Aurélien Baillon, Bram Driesen, Peter P. Wakker
Beschreibung
Zusammenfassung:This paper presents a general technique for comparing the concavity of different utility functions when probabilities need not be known. It generalizes: (a) Yaariʼs comparisons of risk aversion by not requiring identical beliefs; (b) Kreps and Porteusʼ information-timing preference by not requiring known probabilities; (c) Klibanoff, Marinacci, and Mukerjiʼs smooth ambiguity aversion by not using subjective probabilities (which are not directly observable) and by not committing to (violations of) dynamic decision principles; (d) comparative smooth ambiguity aversion by not requiring identical second-order subjective probabilities. Our technique completely isolates the empirical meaning of utility. It thus sheds new light on the descriptive appropriateness of utility to model risk and ambiguity attitudes.
Beschreibung:Received 7 August 2010, available online 23 February 2012
Gesehen am 15.08.2018
Beschreibung:Online Resource
ISSN:1090-2473
DOI:10.1016/j.geb.2012.01.006