Spectral element method for three dimensional elliptic problems with smooth interfaces

In this paper we propose a least-squares spectral element method for three dimensional elliptic interface problems. The differentiability estimates and the main stability theorem, using non-conforming spectral element functions, are proven. The proposed method is free from any kind of first order re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Khan, Arbaz (VerfasserIn) , Husain, Akhlaq (VerfasserIn) , Mohapatra, Subhashree (VerfasserIn) , Upadhyay, Chandra Shekhar (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2017
In: Computer methods in applied mechanics and engineering
Year: 2016, Jahrgang: 315, Pages: 522-549
ISSN:1879-2138
DOI:10.1016/j.cma.2016.11.003
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1016/j.cma.2016.11.003
Verlag, Volltext: http://www.sciencedirect.com/science/article/pii/S0045782516308271
Volltext
Verfasserangaben:Arbaz Khan, Akhlaq Husain, Subhashree Mohapatra, Chandra Shekhar Upadhyay
Beschreibung
Zusammenfassung:In this paper we propose a least-squares spectral element method for three dimensional elliptic interface problems. The differentiability estimates and the main stability theorem, using non-conforming spectral element functions, are proven. The proposed method is free from any kind of first order reformulation. A suitable preconditioner is constructed with help of the regularity estimate and proposed stability estimates which is used to control the condition number. We show that these preconditioners are spectrally equivalent to the quadratic forms by which we approximate them. We obtain the error estimates which show the exponential accuracy of the method. Numerical results are obtained for both straight and curved interfaces to show the efficiency of the proposed method.
Beschreibung:Available online 14 November 2016
Gesehen am 16.08.2018
Beschreibung:Online Resource
ISSN:1879-2138
DOI:10.1016/j.cma.2016.11.003