Spectral element method for three dimensional elliptic problems with smooth interfaces
In this paper we propose a least-squares spectral element method for three dimensional elliptic interface problems. The differentiability estimates and the main stability theorem, using non-conforming spectral element functions, are proven. The proposed method is free from any kind of first order re...
Gespeichert in:
| Hauptverfasser: | , , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
2017
|
| In: |
Computer methods in applied mechanics and engineering
Year: 2016, Jahrgang: 315, Pages: 522-549 |
| ISSN: | 1879-2138 |
| DOI: | 10.1016/j.cma.2016.11.003 |
| Online-Zugang: | Verlag, Volltext: http://dx.doi.org/10.1016/j.cma.2016.11.003 Verlag, Volltext: http://www.sciencedirect.com/science/article/pii/S0045782516308271 |
| Verfasserangaben: | Arbaz Khan, Akhlaq Husain, Subhashree Mohapatra, Chandra Shekhar Upadhyay |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1580096611 | ||
| 003 | DE-627 | ||
| 005 | 20220814221316.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 180816r20172016xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1016/j.cma.2016.11.003 |2 doi | |
| 035 | |a (DE-627)1580096611 | ||
| 035 | |a (DE-576)510096611 | ||
| 035 | |a (DE-599)BSZ510096611 | ||
| 035 | |a (OCoLC)1341017093 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Khan, Arbaz |e VerfasserIn |0 (DE-588)1164608665 |0 (DE-627)1028980418 |0 (DE-576)510093647 |4 aut | |
| 245 | 1 | 0 | |a Spectral element method for three dimensional elliptic problems with smooth interfaces |c Arbaz Khan, Akhlaq Husain, Subhashree Mohapatra, Chandra Shekhar Upadhyay |
| 264 | 1 | |c 2017 | |
| 300 | |a 28 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Available online 14 November 2016 | ||
| 500 | |a Gesehen am 16.08.2018 | ||
| 520 | |a In this paper we propose a least-squares spectral element method for three dimensional elliptic interface problems. The differentiability estimates and the main stability theorem, using non-conforming spectral element functions, are proven. The proposed method is free from any kind of first order reformulation. A suitable preconditioner is constructed with help of the regularity estimate and proposed stability estimates which is used to control the condition number. We show that these preconditioners are spectrally equivalent to the quadratic forms by which we approximate them. We obtain the error estimates which show the exponential accuracy of the method. Numerical results are obtained for both straight and curved interfaces to show the efficiency of the proposed method. | ||
| 534 | |c 2016 | ||
| 650 | 4 | |a Exponential accuracy | |
| 650 | 4 | |a Interfaces | |
| 650 | 4 | |a Least-squares methods | |
| 650 | 4 | |a Linear elliptic PDE in three dimensions | |
| 650 | 4 | |a Non-conforming spectral element method | |
| 650 | 4 | |a Preconditioner | |
| 700 | 1 | |a Husain, Akhlaq |e VerfasserIn |0 (DE-588)1164611356 |0 (DE-627)1028982119 |0 (DE-576)510095216 |4 aut | |
| 700 | 1 | |a Mohapatra, Subhashree |e VerfasserIn |0 (DE-588)1164612298 |0 (DE-627)1028982704 |0 (DE-576)510096107 |4 aut | |
| 700 | 1 | |a Upadhyay, Chandra Shekhar |d 1968- |e VerfasserIn |0 (DE-588)1164609483 |0 (DE-627)1028980795 |0 (DE-576)510094287 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Computer methods in applied mechanics and engineering |d Amsterdam [u.a.] : Elsevier Science, 1972 |g 315(2017), Seite 522-549 |h Online-Ressource |w (DE-627)306715848 |w (DE-600)1501322-4 |w (DE-576)094531285 |x 1879-2138 |7 nnas |a Spectral element method for three dimensional elliptic problems with smooth interfaces |
| 773 | 1 | 8 | |g volume:315 |g year:2017 |g pages:522-549 |g extent:28 |a Spectral element method for three dimensional elliptic problems with smooth interfaces |
| 856 | 4 | 0 | |u http://dx.doi.org/10.1016/j.cma.2016.11.003 |x Verlag |x Resolving-System |3 Volltext |
| 856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S0045782516308271 |x Verlag |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20180816 | ||
| 993 | |a Article | ||
| 994 | |a 2017 | ||
| 998 | |g 1164608665 |a Khan, Arbaz |m 1164608665:Khan, Arbaz |d 700000 |d 708000 |e 700000PK1164608665 |e 708000PK1164608665 |k 0/700000/ |k 1/700000/708000/ |p 1 |x j | ||
| 999 | |a KXP-PPN1580096611 |e 3022441436 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"physDesc":[{"extent":"28 S."}],"relHost":[{"title":[{"title_sort":"Computer methods in applied mechanics and engineering","title":"Computer methods in applied mechanics and engineering"}],"pubHistory":["1.1972 - 200.2011; Vol. 201/204.2012 -"],"part":{"year":"2017","pages":"522-549","text":"315(2017), Seite 522-549","volume":"315","extent":"28"},"disp":"Spectral element method for three dimensional elliptic problems with smooth interfacesComputer methods in applied mechanics and engineering","note":["Gesehen am 06.01.2021"],"type":{"bibl":"periodical","media":"Online-Ressource"},"language":["eng"],"recId":"306715848","origin":[{"dateIssuedDisp":"1972-","publisher":"Elsevier Science","dateIssuedKey":"1972","publisherPlace":"Amsterdam [u.a.]"}],"id":{"zdb":["1501322-4"],"eki":["306715848"],"issn":["1879-2138"]},"physDesc":[{"extent":"Online-Ressource"}]}],"name":{"displayForm":["Arbaz Khan, Akhlaq Husain, Subhashree Mohapatra, Chandra Shekhar Upadhyay"]},"origin":[{"dateIssuedKey":"2017","dateIssuedDisp":"2017"}],"id":{"doi":["10.1016/j.cma.2016.11.003"],"eki":["1580096611"]},"note":["Available online 14 November 2016","Gesehen am 16.08.2018"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"recId":"1580096611","language":["eng"],"person":[{"given":"Arbaz","family":"Khan","role":"aut","roleDisplay":"VerfasserIn","display":"Khan, Arbaz"},{"roleDisplay":"VerfasserIn","display":"Husain, Akhlaq","role":"aut","family":"Husain","given":"Akhlaq"},{"family":"Mohapatra","given":"Subhashree","roleDisplay":"VerfasserIn","display":"Mohapatra, Subhashree","role":"aut"},{"family":"Upadhyay","given":"Chandra Shekhar","roleDisplay":"VerfasserIn","display":"Upadhyay, Chandra Shekhar","role":"aut"}],"title":[{"title_sort":"Spectral element method for three dimensional elliptic problems with smooth interfaces","title":"Spectral element method for three dimensional elliptic problems with smooth interfaces"}]} | ||
| SRT | |a KHANARBAZHSPECTRALEL2017 | ||