Spectral element method for three dimensional elliptic problems with smooth interfaces

In this paper we propose a least-squares spectral element method for three dimensional elliptic interface problems. The differentiability estimates and the main stability theorem, using non-conforming spectral element functions, are proven. The proposed method is free from any kind of first order re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Khan, Arbaz (VerfasserIn) , Husain, Akhlaq (VerfasserIn) , Mohapatra, Subhashree (VerfasserIn) , Upadhyay, Chandra Shekhar (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2017
In: Computer methods in applied mechanics and engineering
Year: 2016, Jahrgang: 315, Pages: 522-549
ISSN:1879-2138
DOI:10.1016/j.cma.2016.11.003
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1016/j.cma.2016.11.003
Verlag, Volltext: http://www.sciencedirect.com/science/article/pii/S0045782516308271
Volltext
Verfasserangaben:Arbaz Khan, Akhlaq Husain, Subhashree Mohapatra, Chandra Shekhar Upadhyay

MARC

LEADER 00000caa a2200000 c 4500
001 1580096611
003 DE-627
005 20220814221316.0
007 cr uuu---uuuuu
008 180816r20172016xx |||||o 00| ||eng c
024 7 |a 10.1016/j.cma.2016.11.003  |2 doi 
035 |a (DE-627)1580096611 
035 |a (DE-576)510096611 
035 |a (DE-599)BSZ510096611 
035 |a (OCoLC)1341017093 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Khan, Arbaz  |e VerfasserIn  |0 (DE-588)1164608665  |0 (DE-627)1028980418  |0 (DE-576)510093647  |4 aut 
245 1 0 |a Spectral element method for three dimensional elliptic problems with smooth interfaces  |c Arbaz Khan, Akhlaq Husain, Subhashree Mohapatra, Chandra Shekhar Upadhyay 
264 1 |c 2017 
300 |a 28 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Available online 14 November 2016 
500 |a Gesehen am 16.08.2018 
520 |a In this paper we propose a least-squares spectral element method for three dimensional elliptic interface problems. The differentiability estimates and the main stability theorem, using non-conforming spectral element functions, are proven. The proposed method is free from any kind of first order reformulation. A suitable preconditioner is constructed with help of the regularity estimate and proposed stability estimates which is used to control the condition number. We show that these preconditioners are spectrally equivalent to the quadratic forms by which we approximate them. We obtain the error estimates which show the exponential accuracy of the method. Numerical results are obtained for both straight and curved interfaces to show the efficiency of the proposed method. 
534 |c 2016 
650 4 |a Exponential accuracy 
650 4 |a Interfaces 
650 4 |a Least-squares methods 
650 4 |a Linear elliptic PDE in three dimensions 
650 4 |a Non-conforming spectral element method 
650 4 |a Preconditioner 
700 1 |a Husain, Akhlaq  |e VerfasserIn  |0 (DE-588)1164611356  |0 (DE-627)1028982119  |0 (DE-576)510095216  |4 aut 
700 1 |a Mohapatra, Subhashree  |e VerfasserIn  |0 (DE-588)1164612298  |0 (DE-627)1028982704  |0 (DE-576)510096107  |4 aut 
700 1 |a Upadhyay, Chandra Shekhar  |d 1968-  |e VerfasserIn  |0 (DE-588)1164609483  |0 (DE-627)1028980795  |0 (DE-576)510094287  |4 aut 
773 0 8 |i Enthalten in  |t Computer methods in applied mechanics and engineering  |d Amsterdam [u.a.] : Elsevier Science, 1972  |g 315(2017), Seite 522-549  |h Online-Ressource  |w (DE-627)306715848  |w (DE-600)1501322-4  |w (DE-576)094531285  |x 1879-2138  |7 nnas  |a Spectral element method for three dimensional elliptic problems with smooth interfaces 
773 1 8 |g volume:315  |g year:2017  |g pages:522-549  |g extent:28  |a Spectral element method for three dimensional elliptic problems with smooth interfaces 
856 4 0 |u http://dx.doi.org/10.1016/j.cma.2016.11.003  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u http://www.sciencedirect.com/science/article/pii/S0045782516308271  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20180816 
993 |a Article 
994 |a 2017 
998 |g 1164608665  |a Khan, Arbaz  |m 1164608665:Khan, Arbaz  |d 700000  |d 708000  |e 700000PK1164608665  |e 708000PK1164608665  |k 0/700000/  |k 1/700000/708000/  |p 1  |x j 
999 |a KXP-PPN1580096611  |e 3022441436 
BIB |a Y 
SER |a journal 
JSO |a {"physDesc":[{"extent":"28 S."}],"relHost":[{"title":[{"title_sort":"Computer methods in applied mechanics and engineering","title":"Computer methods in applied mechanics and engineering"}],"pubHistory":["1.1972 - 200.2011; Vol. 201/204.2012 -"],"part":{"year":"2017","pages":"522-549","text":"315(2017), Seite 522-549","volume":"315","extent":"28"},"disp":"Spectral element method for three dimensional elliptic problems with smooth interfacesComputer methods in applied mechanics and engineering","note":["Gesehen am 06.01.2021"],"type":{"bibl":"periodical","media":"Online-Ressource"},"language":["eng"],"recId":"306715848","origin":[{"dateIssuedDisp":"1972-","publisher":"Elsevier Science","dateIssuedKey":"1972","publisherPlace":"Amsterdam [u.a.]"}],"id":{"zdb":["1501322-4"],"eki":["306715848"],"issn":["1879-2138"]},"physDesc":[{"extent":"Online-Ressource"}]}],"name":{"displayForm":["Arbaz Khan, Akhlaq Husain, Subhashree Mohapatra, Chandra Shekhar Upadhyay"]},"origin":[{"dateIssuedKey":"2017","dateIssuedDisp":"2017"}],"id":{"doi":["10.1016/j.cma.2016.11.003"],"eki":["1580096611"]},"note":["Available online 14 November 2016","Gesehen am 16.08.2018"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"recId":"1580096611","language":["eng"],"person":[{"given":"Arbaz","family":"Khan","role":"aut","roleDisplay":"VerfasserIn","display":"Khan, Arbaz"},{"roleDisplay":"VerfasserIn","display":"Husain, Akhlaq","role":"aut","family":"Husain","given":"Akhlaq"},{"family":"Mohapatra","given":"Subhashree","roleDisplay":"VerfasserIn","display":"Mohapatra, Subhashree","role":"aut"},{"family":"Upadhyay","given":"Chandra Shekhar","roleDisplay":"VerfasserIn","display":"Upadhyay, Chandra Shekhar","role":"aut"}],"title":[{"title_sort":"Spectral element method for three dimensional elliptic problems with smooth interfaces","title":"Spectral element method for three dimensional elliptic problems with smooth interfaces"}]} 
SRT |a KHANARBAZHSPECTRALEL2017