Sensitivity generation in an adaptive BDF-method

In this article we describe state-of-the-art approaches to calculate solutions and sensitivities for initial value problems (IVP) of semi-explicit systems of differential-algebraic equations of index one. We start with a description of the techniques we use to solve the systems efficiently with an a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Albersmeyer, Jan (VerfasserIn) , Bock, Hans Georg (VerfasserIn)
Dokumenttyp: Kapitel/Artikel Konferenzschrift
Sprache:Englisch
Veröffentlicht: 2008
In: Modeling, simulation and optimization of complex processes
Year: 2008, Pages: 15-24
DOI:10.1007/978-3-540-79409-7_2
Online-Zugang:Resolving-System, Volltext: http://dx.doi.org/10.1007/978-3-540-79409-7_2
Verlag, Volltext: https://link.springer.com/chapter/10.1007/978-3-540-79409-7_2
Volltext
Verfasserangaben:Jan Albersmeyer and Hans Georg Bock
Beschreibung
Zusammenfassung:In this article we describe state-of-the-art approaches to calculate solutions and sensitivities for initial value problems (IVP) of semi-explicit systems of differential-algebraic equations of index one. We start with a description of the techniques we use to solve the systems efficiently with an adaptive BDF-method. Afterwards we focus on the computation of sensitivities using the principle of Internal Numerical Differentiation (IND) invented by Bock [4]. We present a newly implemented reverse mode of IND to generate sensitivity information in an adjoint way. At the end we show a numerical comparison for the old and new approaches for sensitivity generation using the software package DAESOL-II [1], in which both approaches are implemented.
Beschreibung:Gesehen am 17.08.2018
Beschreibung:Online Resource
ISBN:9783540794097
DOI:10.1007/978-3-540-79409-7_2