A geometric approach for color image regularization

We present a new vectorial total variation method that addresses the problem of color consistent image filtering. Our approach is inspired from the double-opponent cell representation in the human visual cortex. Existing methods of vectorial total variation regularizers have insufficient (or no) cou...

Full description

Saved in:
Bibliographic Details
Main Authors: Åström, Freddie (Author) , Schnörr, Christoph (Author)
Format: Article (Journal)
Language:English
Published: 27 October 2017
In: Computer vision and image understanding
Year: 2017, Volume: 165, Pages: 43-59
ISSN:1090-235X
DOI:10.1016/j.cviu.2017.10.013
Online Access:Verlag, Volltext: http://dx.doi.org/10.1016/j.cviu.2017.10.013
Verlag, Volltext: http://www.sciencedirect.com/science/article/pii/S1077314217301765
Get full text
Author Notes:Freddie Åström, Christoph Schnörr
Description
Summary:We present a new vectorial total variation method that addresses the problem of color consistent image filtering. Our approach is inspired from the double-opponent cell representation in the human visual cortex. Existing methods of vectorial total variation regularizers have insufficient (or no) coupling between the color channels and thus may introduce color artifacts. We address this problem by introducing a novel coupling between the color channels related to a pullback-metric from the opponent space to the data (RGB color) space. Our energy is a non-convex, non-smooth higher-order vectorial total variation approach and promotes color consistent image filtering via a coupling term. For a convex variant, we show well-posedness and existence of a solution in the space of vectorial bounded variation. For the higher-order scheme we employ a half-quadratic strategy, which model the non-convex energy terms as the infimum of a sequence of quadratic functions. In experiments, we elaborate on traditional image restoration applications of inpainting, deblurring and denoising. Regarding the latter, we consider two noise scenarios i) intensity and chromaticity (the color representation of the double-opponent space) are corrupted by uniform noise and ii) only the chromaticity is corrupted with noise. In the latter case, we demonstrate state of the art restoration quality with respect to structure coherence and color consistency.
Item Description:Gesehen am 20.08.2018
Physical Description:Online Resource
ISSN:1090-235X
DOI:10.1016/j.cviu.2017.10.013