A geometric approach for color image regularization
We present a new vectorial total variation method that addresses the problem of color consistent image filtering. Our approach is inspired from the double-opponent cell representation in the human visual cortex. Existing methods of vectorial total variation regularizers have insufficient (or no) cou...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
27 October 2017
|
| In: |
Computer vision and image understanding
Year: 2017, Volume: 165, Pages: 43-59 |
| ISSN: | 1090-235X |
| DOI: | 10.1016/j.cviu.2017.10.013 |
| Online Access: | Verlag, Volltext: http://dx.doi.org/10.1016/j.cviu.2017.10.013 Verlag, Volltext: http://www.sciencedirect.com/science/article/pii/S1077314217301765 |
| Author Notes: | Freddie Åström, Christoph Schnörr |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1580183581 | ||
| 003 | DE-627 | ||
| 005 | 20220814223909.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 180820s2017 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1016/j.cviu.2017.10.013 |2 doi | |
| 035 | |a (DE-627)1580183581 | ||
| 035 | |a (DE-576)510183581 | ||
| 035 | |a (DE-599)BSZ510183581 | ||
| 035 | |a (OCoLC)1341017049 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 28 |2 sdnb | ||
| 100 | 1 | |a Åström, Freddie |e VerfasserIn |0 (DE-588)1153903539 |0 (DE-627)1015504132 |0 (DE-576)500624267 |4 aut | |
| 245 | 1 | 2 | |a A geometric approach for color image regularization |c Freddie Åström, Christoph Schnörr |
| 264 | 1 | |c 27 October 2017 | |
| 300 | |a 17 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 20.08.2018 | ||
| 520 | |a We present a new vectorial total variation method that addresses the problem of color consistent image filtering. Our approach is inspired from the double-opponent cell representation in the human visual cortex. Existing methods of vectorial total variation regularizers have insufficient (or no) coupling between the color channels and thus may introduce color artifacts. We address this problem by introducing a novel coupling between the color channels related to a pullback-metric from the opponent space to the data (RGB color) space. Our energy is a non-convex, non-smooth higher-order vectorial total variation approach and promotes color consistent image filtering via a coupling term. For a convex variant, we show well-posedness and existence of a solution in the space of vectorial bounded variation. For the higher-order scheme we employ a half-quadratic strategy, which model the non-convex energy terms as the infimum of a sequence of quadratic functions. In experiments, we elaborate on traditional image restoration applications of inpainting, deblurring and denoising. Regarding the latter, we consider two noise scenarios i) intensity and chromaticity (the color representation of the double-opponent space) are corrupted by uniform noise and ii) only the chromaticity is corrupted with noise. In the latter case, we demonstrate state of the art restoration quality with respect to structure coherence and color consistency. | ||
| 650 | 4 | |a Color image restoration | |
| 650 | 4 | |a Double-opponent space | |
| 650 | 4 | |a Image analysis | |
| 650 | 4 | |a Non-convex regularization | |
| 650 | 4 | |a Split-Bregman | |
| 650 | 4 | |a Vectorial total variation | |
| 700 | 1 | |a Schnörr, Christoph |e VerfasserIn |0 (DE-588)1023033348 |0 (DE-627)717351017 |0 (DE-576)168404540 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Computer vision and image understanding |d San Diego, Calif. : Elsevier, 1995 |g 165(2017), Seite 43-59 |h Online-Ressource |w (DE-627)254637876 |w (DE-600)1462895-8 |w (DE-576)103373063 |x 1090-235X |7 nnas |a A geometric approach for color image regularization |
| 773 | 1 | 8 | |g volume:165 |g year:2017 |g pages:43-59 |g extent:17 |a A geometric approach for color image regularization |
| 856 | 4 | 0 | |u http://dx.doi.org/10.1016/j.cviu.2017.10.013 |x Verlag |x Resolving-System |3 Volltext |
| 856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S1077314217301765 |x Verlag |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20180820 | ||
| 993 | |a Article | ||
| 994 | |a 2017 | ||
| 998 | |g 1023033348 |a Schnörr, Christoph |m 1023033348:Schnörr, Christoph |d 110000 |d 110200 |d 110000 |d 110400 |d 700000 |d 708000 |e 110000PS1023033348 |e 110200PS1023033348 |e 110000PS1023033348 |e 110400PS1023033348 |e 700000PS1023033348 |e 708000PS1023033348 |k 0/110000/ |k 1/110000/110200/ |k 0/110000/ |k 1/110000/110400/ |k 0/700000/ |k 1/700000/708000/ |p 2 |y j | ||
| 998 | |g 1153903539 |a Åström, Freddie |m 1153903539:Åström, Freddie |d 700000 |d 708070 |e 700000PA1153903539 |e 708070PA1153903539 |k 0/700000/ |k 1/700000/708070/ |p 1 |x j | ||
| 999 | |a KXP-PPN1580183581 |e 3022599064 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"language":["eng"],"note":["Gesehen am 20.08.2018"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"origin":[{"dateIssuedKey":"2017","dateIssuedDisp":"27 October 2017"}],"title":[{"title":"A geometric approach for color image regularization","title_sort":"geometric approach for color image regularization"}],"person":[{"given":"Freddie","role":"aut","display":"Åström, Freddie","family":"Åström"},{"given":"Christoph","role":"aut","family":"Schnörr","display":"Schnörr, Christoph"}],"id":{"doi":["10.1016/j.cviu.2017.10.013"],"eki":["1580183581"]},"relHost":[{"disp":"A geometric approach for color image regularizationComputer vision and image understanding","part":{"volume":"165","extent":"17","text":"165(2017), Seite 43-59","pages":"43-59","year":"2017"},"type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 06.01.2021"],"origin":[{"dateIssuedKey":"1995","publisher":"Elsevier ; Acad. Pr.","publisherPlace":"San Diego, Calif. ; Orlando, Fla.","dateIssuedDisp":"1995-"}],"titleAlt":[{"title":"CVIU"},{"title":"CVGIP"},{"title":"CVGIP / Image understanding"}],"title":[{"title":"Computer vision and image understanding","subtitle":"CVIU","title_sort":"Computer vision and image understanding"}],"language":["eng"],"physDesc":[{"extent":"Online-Ressource"}],"recId":"254637876","pubHistory":["61.1995 - 117.2013; Vol. 118.2014 -"],"id":{"zdb":["1462895-8"],"eki":["254637876"],"issn":["1090-235X"]}}],"recId":"1580183581","physDesc":[{"extent":"17 S."}],"name":{"displayForm":["Freddie Åström, Christoph Schnörr"]}} | ||
| SRT | |a ASTROEMFREGEOMETRICA2720 | ||