Uniqueness and stability of harmonic maps and their Jacobi fields

Let M, N be Riemannian manifolds and let f1, f2: M→N be harmonic maps. Using a maximum principle, an estimate of the distances of these maps by the distances of their boundary values will be proved. Corresponding estimates will be stated for the norm of Jacobi fields along harmonic maps, and for the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jäger, Willi (VerfasserIn) , Kaul, Helmut (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 1979
In: Manuscripta mathematica
Year: 1979, Jahrgang: 28, Heft: 1-3, Pages: 269-291
ISSN:1432-1785
DOI:10.1007/BF01647975
Online-Zugang:Resolving-System, Volltext: http://dx.doi.org/10.1007/BF01647975
Verlag, Volltext: https://link.springer.com/article/10.1007/BF01647975
Volltext
Verfasserangaben:Willi Jäger and Helmut Kaul
Beschreibung
Zusammenfassung:Let M, N be Riemannian manifolds and let f1, f2: M→N be harmonic maps. Using a maximum principle, an estimate of the distances of these maps by the distances of their boundary values will be proved. Corresponding estimates will be stated for the norm of Jacobi fields along harmonic maps, and for the distances of solutions of the heat equation.
Beschreibung:Gesehen am 07.09.2018
Beschreibung:Online Resource
ISSN:1432-1785
DOI:10.1007/BF01647975