Structural plasticity of synaptopodin in the axon initial segment during visual cortex development

Abstract: The axon initial segment (AIS) is essential for action potential generation. Recently, the AIS was identified as a site of neuronal plasticity. A subpopulation of AIS in cortical principal neurons contains stacks of endoplasmic reticulum (ER) forming the cisternal organelle (CO). The funct...

Full description

Saved in:
Bibliographic Details
Main Authors: Schlüter, Annabelle (Author) , Schultz, Christian (Author) , Engelhardt, Maren (Author)
Format: Article (Journal)
Language:English
Published: 27 July 2017
In: Cerebral cortex
Year: 2017, Volume: 27, Issue: 9, Pages: 4662-4675
ISSN:1460-2199
DOI:10.1093/cercor/bhx208
Online Access:Verlag, Volltext: http://dx.doi.org/10.1093/cercor/bhx208
Verlag, Volltext: https://academic-oup-com.ezproxy.medma.uni-heidelberg.de/cercor/article/27/9/4662/4083397
Get full text
Author Notes:Annabelle Schlüter, Domenico Del Turco, Thomas Deller, Annika Gutzmann, Christian Schultz and Maren Engelhardt
Description
Summary:Abstract: The axon initial segment (AIS) is essential for action potential generation. Recently, the AIS was identified as a site of neuronal plasticity. A subpopulation of AIS in cortical principal neurons contains stacks of endoplasmic reticulum (ER) forming the cisternal organelle (CO). The function of this organelle is poorly understood, but roles in local Ca2+-trafficking and AIS plasticity are discussed. To investigate whether the presence and/or the size of COs are linked to the development and maturation of AIS of cortical neurons, we analyzed the relationship between COs and the AIS during visual cortex development under control and visual deprivation conditions. In wildtype mice, immunolabeling for synaptopodin, ankyrin-G, and ßIV-spectrin were employed to label COs and the AIS, respectively. Dark rearing resulted in an increase in synaptopodin cluster sizes, suggesting a homeostatic function of the CO in this cellular compartment. In line with this observation, synaptopodin-deficient mice lacking the CO showed AIS shortening in the dark. Collectively, these data demonstrate that the CO is an essential part of the AIS machinery required for AIS plasticity during a critical developmental period of the visual cortex.
Item Description:Gesehen am 11.09.2018
Physical Description:Online Resource
ISSN:1460-2199
DOI:10.1093/cercor/bhx208