Quantitative diagnosis of breast tumors by morphometric classification of microenvironmental myoepithelial cells using a machine learning approach

Machine learning systems have recently received increased attention for their broad applications in several fields. In this study, we show for the first time that histological types of breast tumors can be classified using subtle morphological differences of microenvironmental myoepithelial cell nuc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yamamoto, Yoichiro (VerfasserIn) , Rojas-Moraleda, Rodrigo (VerfasserIn) , Eils, Roland (VerfasserIn) , Grabe, Niels (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 25 April 2017
In: Scientific reports
Year: 2017, Jahrgang: 7
ISSN:2045-2322
DOI:10.1038/srep46732
Online-Zugang:Verlag, kostenfrei, Volltext: http://dx.doi.org/10.1038/srep46732
Verlag, kostenfrei, Volltext: https://www.nature.com/articles/srep46732
Volltext
Verfasserangaben:Yoichiro Yamamoto, Akira Saito, Ayako Tateishi, Hisashi Shimojo, Hiroyuki Kanno, Shinichi Tsuchiya, Ken-ichi Ito, Eric Cosatto, Hans Peter Graf, Rodrigo R. Moraleda, Roland Eils & Niels Grabe

MARC

LEADER 00000caa a2200000 c 4500
001 1582174466
003 DE-627
005 20230427193148.0
007 cr uuu---uuuuu
008 181022s2017 xx |||||o 00| ||eng c
024 7 |a 10.1038/srep46732  |2 doi 
035 |a (DE-627)1582174466 
035 |a (DE-576)512174466 
035 |a (DE-599)BSZ512174466 
035 |a (OCoLC)1341020453 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Yamamoto, Yoichiro  |e VerfasserIn  |0 (DE-588)1169634311  |0 (DE-627)1035230380  |0 (DE-576)512174571  |4 aut 
245 1 0 |a Quantitative diagnosis of breast tumors by morphometric classification of microenvironmental myoepithelial cells using a machine learning approach  |c Yoichiro Yamamoto, Akira Saito, Ayako Tateishi, Hisashi Shimojo, Hiroyuki Kanno, Shinichi Tsuchiya, Ken-ichi Ito, Eric Cosatto, Hans Peter Graf, Rodrigo R. Moraleda, Roland Eils & Niels Grabe 
264 1 |c 25 April 2017 
300 |a 12 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 22.10.2018 
520 |a Machine learning systems have recently received increased attention for their broad applications in several fields. In this study, we show for the first time that histological types of breast tumors can be classified using subtle morphological differences of microenvironmental myoepithelial cell nuclei without any direct information about neoplastic tumor cells. We quantitatively measured 11661 nuclei on the four histological types: normal cases, usual ductal hyperplasia and low/high grade ductal carcinoma in situ (DCIS). Using a machine learning system, we succeeded in classifying the four histological types with 90.9% accuracy. Electron microscopy observations suggested that the activity of typical myoepithelial cells in DCIS was lowered. Through these observations as well as meta-analytic database analyses, we developed a paracrine cross-talk-based biological mechanism of DCIS progressing to invasive cancer. Our observations support novel approaches in clinical computational diagnostics as well as in therapy development against progression. 
700 1 |a Rojas-Moraleda, Rodrigo  |e VerfasserIn  |0 (DE-588)1137632224  |0 (DE-627)894989774  |0 (DE-576)491668759  |4 aut 
700 1 |a Eils, Roland  |d 1965-  |e VerfasserIn  |0 (DE-588)1020648287  |0 (DE-627)691291705  |0 (DE-576)361718195  |4 aut 
700 1 |a Grabe, Niels  |e VerfasserIn  |0 (DE-588)123210615  |0 (DE-627)716920697  |0 (DE-576)364937602  |4 aut 
773 0 8 |i Enthalten in  |t Scientific reports  |d [London] : Springer Nature, 2011  |g 7(2017), Artikel-ID 46732  |h Online-Ressource  |w (DE-627)663366712  |w (DE-600)2615211-3  |w (DE-576)346641179  |x 2045-2322  |7 nnas  |a Quantitative diagnosis of breast tumors by morphometric classification of microenvironmental myoepithelial cells using a machine learning approach 
773 1 8 |g volume:7  |g year:2017  |g elocationid:46732  |g extent:12  |a Quantitative diagnosis of breast tumors by morphometric classification of microenvironmental myoepithelial cells using a machine learning approach 
856 4 0 |u http://dx.doi.org/10.1038/srep46732  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://www.nature.com/articles/srep46732  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20181022 
993 |a Article 
994 |a 2017 
998 |g 123210615  |a Grabe, Niels  |m 123210615:Grabe, Niels  |d 700000  |d 716000  |e 700000PG123210615  |e 716000PG123210615  |k 0/700000/  |k 1/700000/716000/  |p 12  |y j 
998 |g 1020648287  |a Eils, Roland  |m 1020648287:Eils, Roland  |d 160000  |d 160100  |d 700000  |d 718000  |e 160000PE1020648287  |e 160100PE1020648287  |e 700000PE1020648287  |e 718000PE1020648287  |k 0/160000/  |k 1/160000/160100/  |k 0/700000/  |k 1/700000/718000/  |p 11 
998 |g 1137632224  |a Rojas-Moraleda, Rodrigo  |m 1137632224:Rojas-Moraleda, Rodrigo  |p 10 
998 |g 1169634311  |a Yamamoto, Yoichiro  |m 1169634311:Yamamoto, Yoichiro  |d 160000  |d 160100  |e 160000PY1169634311  |e 160100PY1169634311  |k 0/160000/  |k 1/160000/160100/  |p 1  |x j 
999 |a KXP-PPN1582174466  |e 3029466353 
BIB |a Y 
SER |a journal 
JSO |a {"title":[{"title":"Quantitative diagnosis of breast tumors by morphometric classification of microenvironmental myoepithelial cells using a machine learning approach","title_sort":"Quantitative diagnosis of breast tumors by morphometric classification of microenvironmental myoepithelial cells using a machine learning approach"}],"language":["eng"],"person":[{"role":"aut","given":"Yoichiro","display":"Yamamoto, Yoichiro","family":"Yamamoto"},{"family":"Rojas-Moraleda","given":"Rodrigo","display":"Rojas-Moraleda, Rodrigo","role":"aut"},{"role":"aut","family":"Eils","given":"Roland","display":"Eils, Roland"},{"family":"Grabe","display":"Grabe, Niels","given":"Niels","role":"aut"}],"origin":[{"dateIssuedDisp":"25 April 2017","dateIssuedKey":"2017"}],"name":{"displayForm":["Yoichiro Yamamoto, Akira Saito, Ayako Tateishi, Hisashi Shimojo, Hiroyuki Kanno, Shinichi Tsuchiya, Ken-ichi Ito, Eric Cosatto, Hans Peter Graf, Rodrigo R. Moraleda, Roland Eils & Niels Grabe"]},"recId":"1582174466","note":["Gesehen am 22.10.2018"],"relHost":[{"title":[{"title_sort":"Scientific reports","title":"Scientific reports"}],"origin":[{"dateIssuedDisp":"2011-","publisher":"Springer Nature ; Nature Publishing Group","publisherPlace":"[London] ; London","dateIssuedKey":"2011"}],"note":["Gesehen am 12.07.24"],"physDesc":[{"extent":"Online-Ressource"}],"part":{"volume":"7","text":"7(2017), Artikel-ID 46732","extent":"12","year":"2017"},"id":{"eki":["663366712"],"issn":["2045-2322"],"zdb":["2615211-3"]},"language":["eng"],"recId":"663366712","disp":"Quantitative diagnosis of breast tumors by morphometric classification of microenvironmental myoepithelial cells using a machine learning approachScientific reports","type":{"media":"Online-Ressource","bibl":"periodical"},"pubHistory":["1, article number 1 (2011)-"]}],"physDesc":[{"extent":"12 S."}],"id":{"doi":["10.1038/srep46732"],"eki":["1582174466"]},"type":{"media":"Online-Ressource","bibl":"article-journal"}} 
SRT |a YAMAMOTOYOQUANTITATI2520