Detailed characterization of early HIV-1 replication dynamics in primary human macrophages
Macrophages are natural target cells of human immunodeficiency virus type 1 (HIV-1). Viral replication appears to be delayed in these cells compared to lymphocytes; however, little is known about the kinetics of early post-entry events. Time-of-addition experiments using several HIV-1 inhibitors and...
Gespeichert in:
| Hauptverfasser: | , , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
10 November 2018
|
| In: |
Viruses
Year: 2018, Jahrgang: 10, Heft: 11 |
| ISSN: | 1999-4915 |
| DOI: | 10.3390/v10110620 |
| Online-Zugang: | Verlag, kostenfrei, Volltext: http://dx.doi.org/10.3390/v10110620 Verlag, kostenfrei, Volltext: https://www.mdpi.com/1999-4915/10/11/620 |
| Verfasserangaben: | David Alejandro Bejarano, Maria C. Puertas, Kathleen Börner, Javier Martinez-Picado, Barbara Müller and Hans-Georg Kräusslich |
| Zusammenfassung: | Macrophages are natural target cells of human immunodeficiency virus type 1 (HIV-1). Viral replication appears to be delayed in these cells compared to lymphocytes; however, little is known about the kinetics of early post-entry events. Time-of-addition experiments using several HIV-1 inhibitors and the detection of reverse transcriptase (RT) products with droplet digital PCR (ddPCR) revealed that early replication was delayed in primary human monocyte-derived macrophages of several donors and peaked late after infection. Direct imaging of reverse-transcription and pre-integration complexes (RTC/PIC) by click-labeling of newly synthesized DNA further confirmed our findings and showed a concomitant shift to the nuclear stage over time. Altering the entry pathway enhanced infectivity but did not affect kinetics of viral replication. The addition of viral protein X (Vpx) enhanced productive infection and accelerated completion of reverse transcription and nuclear entry. We propose that sterile alpha motif (SAM) and histidine/aspartate (HD) domain-containing protein 1 (SAMHD1) activity lowering deoxyribonucleotide triphosphate (dNTP) pools is the principal factor delaying early HIV-1 replication in macrophages. |
|---|---|
| Beschreibung: | Gesehen am 20.11.2018 |
| Beschreibung: | Online Resource |
| ISSN: | 1999-4915 |
| DOI: | 10.3390/v10110620 |