Understanding human navigation using network analysis

We have considered a simple word game called the word-morph. After making our participants play a stipulated number of word-morph games, we have analyzed the experimental data. We have given a detailed analysis of the learning involved in solving this word game. We propose that people are inclined t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Iyengar, Sudarshan (VerfasserIn) , Veni Madhavan, C. E. (VerfasserIn) , Zweig, Katharina A. (VerfasserIn) , Natarajan, Abhiram (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 17 January 2012
In: Topics in cognitive science
Year: 2012, Jahrgang: 4, Heft: 1, Pages: 121-134
ISSN:1756-8765
DOI:10.1111/j.1756-8765.2011.01178.x
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1111/j.1756-8765.2011.01178.x
Verlag, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1756-8765.2011.01178.x
Volltext
Verfasserangaben:S.R. Sudarshan Iyengar, C.E. Veni Madhavan, Katharina A. Zweig, Abhiram Natarajan
Beschreibung
Zusammenfassung:We have considered a simple word game called the word-morph. After making our participants play a stipulated number of word-morph games, we have analyzed the experimental data. We have given a detailed analysis of the learning involved in solving this word game. We propose that people are inclined to learn landmarks when they are asked to navigate from a source to a destination. We note that these landmarks are nodes that have high closeness-centrality ranking.
Beschreibung:Gesehen am 21.11.2018
Beschreibung:Online Resource
ISSN:1756-8765
DOI:10.1111/j.1756-8765.2011.01178.x