Deciphering 3D organization of chromosomes using Hi-C data

In order to interpret data from Hi-C studies genome-wide contact probability maps need to be translated into models of functional 3D genome organization. Here, we first present an overview of computational methods to analyze contact probability maps in terms of features such as the level and shape o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hofmann, Andreas (VerfasserIn) , Heermann, Dieter W. (VerfasserIn)
Dokumenttyp: Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 15 August 2018
In: Bacterial chromatin
Year: 2018, Pages: 389-401
DOI:10.1007/978-1-4939-8675-0_19
Online-Zugang:Verlag, Volltext: https://link.springer.com/protocol/10.1007/978-1-4939-8675-0_19
Verlag, Volltext: https://doi.org/10.1007/978-1-4939-8675-0_19
Volltext
Verfasserangaben:Andreas Hofmann, Dieter W. Heermann
Beschreibung
Zusammenfassung:In order to interpret data from Hi-C studies genome-wide contact probability maps need to be translated into models of functional 3D genome organization. Here, we first present an overview of computational methods to analyze contact probability maps in terms of features such as the level and shape of compartmentalization. Next, we describe approaches to modeling 3D genome organization based on Hi-C data.
Beschreibung:Gesehen am 04.12.2020
Beschreibung:Online Resource
ISBN:9781493986750
DOI:10.1007/978-1-4939-8675-0_19