On born’s conjecture about optimal distribution of charges for an infinite ionic crystal

We study the problem for the optimal charge distribution on the sites of a fixed Bravais lattice. In particular, we prove Born’s conjecture about the optimality of the rock salt alternate distribution of charges on a cubic lattice (and more generally on a d-dimensional orthorhombic lattice). Further...

Full description

Saved in:
Bibliographic Details
Main Authors: Bétermin, Laurent (Author) , Knüpfer, Hans (Author)
Format: Article (Journal)
Language:English
Published: October 2018
In: Journal of nonlinear science
Year: 2018, Volume: 28, Issue: 5, Pages: 1629-1656
ISSN:1432-1467
DOI:10.1007/s00332-018-9460-3
Online Access:Resolving-System, Volltext: http://dx.doi.org/10.1007/s00332-018-9460-3
Verlag, Volltext: https://link.springer.com/article/10.1007/s00332-018-9460-3
Get full text
Author Notes:Laurent Bétermin, Hans Knüpfer
Description
Summary:We study the problem for the optimal charge distribution on the sites of a fixed Bravais lattice. In particular, we prove Born’s conjecture about the optimality of the rock salt alternate distribution of charges on a cubic lattice (and more generally on a d-dimensional orthorhombic lattice). Furthermore, we study this problem on the two-dimensional triangular lattice and we prove the optimality of a two-component honeycomb distribution of charges.
Item Description:Gesehen am 17.12.2018
Physical Description:Online Resource
ISSN:1432-1467
DOI:10.1007/s00332-018-9460-3