Dynamical spike solutions in a nonlocal model of pattern formation

Coupling a reaction-diffusion equation with ordinary differential equa- tions (ODE) may lead to diffusion-driven instability (DDI) which, in contrast to the classical reaction-diffusion models, causes destabilization of both, constant solutions and Turing patterns. Using a shadow-type limit of a rea...

Full description

Saved in:
Bibliographic Details
Main Authors: Marciniak-Czochra, Anna (Author) , Härting, Steffen (Author)
Format: Article (Journal)
Language:English
Published: 27 March 2018
In: Nonlinearity
Year: 2018, Volume: 31, Issue: 5
ISSN:1361-6544
DOI:10.1088/1361-6544/aaa5dc
Online Access:Resolving-System, Volltext: http://dx.doi.org/10.1088/1361-6544/aaa5dc
Verlag, Volltext: http://stacks.iop.org/0951-7715/31/i=5/a=1757
Get full text
Author Notes:Anna Marciniak-Czochra, Steffen Härting, Grzegorz Karch and Kanako Suzuki
Description
Summary:Coupling a reaction-diffusion equation with ordinary differential equa- tions (ODE) may lead to diffusion-driven instability (DDI) which, in contrast to the classical reaction-diffusion models, causes destabilization of both, constant solutions and Turing patterns. Using a shadow-type limit of a reaction-diffusion-ODE model, we show that in such cases the instability driven by nonlocal terms (a counterpart of DDI) may lead to formation of unbounded spike patterns.
Item Description:Gesehen am 17.12.2018
Physical Description:Online Resource
ISSN:1361-6544
DOI:10.1088/1361-6544/aaa5dc