Dynamical spike solutions in a nonlocal model of pattern formation
Coupling a reaction-diffusion equation with ordinary differential equa- tions (ODE) may lead to diffusion-driven instability (DDI) which, in contrast to the classical reaction-diffusion models, causes destabilization of both, constant solutions and Turing patterns. Using a shadow-type limit of a rea...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
27 March 2018
|
| In: |
Nonlinearity
Year: 2018, Jahrgang: 31, Heft: 5 |
| ISSN: | 1361-6544 |
| DOI: | 10.1088/1361-6544/aaa5dc |
| Online-Zugang: | Resolving-System, Volltext: http://dx.doi.org/10.1088/1361-6544/aaa5dc Verlag, Volltext: http://stacks.iop.org/0951-7715/31/i=5/a=1757 |
| Verfasserangaben: | Anna Marciniak-Czochra, Steffen Härting, Grzegorz Karch and Kanako Suzuki |
Search Result 1
Dynamical spike solutions in a nonlocal model of pattern formation
Article (Journal)
Kapitel/Artikel
Online Resource