QCD or what?

Autoencoder networks, trained only on QCD jets, can be used to search for anomalies in jet-substructure. We show how, based either on images or on 4-vectors, they identify jets from decays of arbitrary heavy resonances. To control the backgrounds and the underlying systematics we can de-correlate th...

Full description

Saved in:
Bibliographic Details
Main Authors: Heimel, Theo (Author) , Plehn, Tilman (Author) , Thompson, Jennifer M. (Author)
Format: Article (Journal) Chapter/Article
Language:English
Published: 14 Jan 2019
In: Arxiv

Online Access:Verlag, Volltext: http://arxiv.org/abs/1808.08979
Get full text
Author Notes:Theo Heimel, Gregor Kasieczka, Tilman Plehn, and Jennifer M. Thompson
Description
Summary:Autoencoder networks, trained only on QCD jets, can be used to search for anomalies in jet-substructure. We show how, based either on images or on 4-vectors, they identify jets from decays of arbitrary heavy resonances. To control the backgrounds and the underlying systematics we can de-correlate the jet mass using an adversarial network. Such an adversarial autoencoder allows for a general and at the same time easily controllable search for new physics. Ideally, it can be trained and applied to data in the same phase space region, allowing us to efficiently search for new physics using un-supervised learning.
Item Description:Gesehen am 11.09.2020
Physical Description:Online Resource