Estimating ergodization time of a chaotic many-particle system from a time reversal of equilibrium noise

We propose a method of estimating ergodization time of a chaotic many-particle system by monitoring equilibrium noise before and after time reversal of dynamics (Loschmidt echo). The ergodization time is defined as the characteristic time required to extract the largest Lyapunov exponent from a syst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tarkhov, Andrei E. (VerfasserIn) , Fine, Boris V. (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 21 December 2018
In: New journal of physics
Year: 2018, Jahrgang: 20, Heft: 12
ISSN:1367-2630
DOI:10.1088/1367-2630/aaf0b6
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1088/1367-2630/aaf0b6
Verlag, Volltext: http://stacks.iop.org/1367-2630/20/i=12/a=123021
Volltext
Verfasserangaben:Andrei E. Tarkhov and Boris V. Fine
Beschreibung
Zusammenfassung:We propose a method of estimating ergodization time of a chaotic many-particle system by monitoring equilibrium noise before and after time reversal of dynamics (Loschmidt echo). The ergodization time is defined as the characteristic time required to extract the largest Lyapunov exponent from a system’s dynamics. We validate the method by numerical simulation of an array of coupled Bose-Einstein condensates in the regime describable by the discrete Gross-Pitaevskii equation. The quantity of interest for the method is a counterpart of out-of-time-order correlators in the quantum regime.
Beschreibung:Gesehen am 05.11.2020
Beschreibung:Online Resource
ISSN:1367-2630
DOI:10.1088/1367-2630/aaf0b6