Next-generation spin-0 dark matter models

Dark matter (DM) simplified models are by now commonly used by the ATLAS and CMS Collaborations to interpret searches for missing transverse energy ($E_T^\mathrm{miss}$). The coherent use of these models sharpened the LHC DM search program, especially in the presentation of its results and their com...

Full description

Saved in:
Bibliographic Details
Main Authors: Abe, Tomohiro (Author) , Bauer, Martin (Author) , Brandt, Oleg (Author) , Henkelmann, Lars (Author)
Corporate Author: CERN, LHC Dark Matter Working Group (Editor)
Format: Article (Journal) Chapter/Article
Language:English
Published: 5 Dec 2018
In: Arxiv

Online Access:Verlag, Volltext: http://arxiv.org/abs/1810.09420
Get full text
Author Notes:LHC Dark Matter Working Group; Tomohiro Abe, Yoav Afik, Andreas Albert, Christopher R. Anelli, Liron Barak, Martin Bauer, J. Katharina Behr, Nicole F. Bell, Antonio Boveia, Oleg Brandt, Giorgio Busoni, Linda M. Carpenter, Yu-Heng Chen, Caterina Doglioni, Alison Elliot, Motoko Fujiwara, Marie-Helene Genest, Raffaele Gerosa, Stefania Gori, Johanna Gramling, Alexander Grohsjean, Giuliano Gustavino, Kristian Hahn, Ulrich Haisch, Lars Henkelmann, Junji Hisano, Anders Huitfeldt, Valerio Ippolito, Felix Kahlhoefer, Greg Landsberg, Steven Lowette, Benedikt Maier, Fabio Maltoni, Margarete Muehlleitner, Jose M. No, Priscilla Pani, Giacomo Polesello, Darren D. Price, Tania Robens, Giulia Rovelli, Yoram Rozen, Isaac W. Sanderson, Rui Santos, Stanislava Sevova, David Sperka, Kevin Sung, Tim M. P. Tait, Koji Terashi, Francesca C. Ungaro, Eleni Vryonidou, Shin-Shan Yu, Sau Lan Wu, and Chen Zhou
Description
Summary:Dark matter (DM) simplified models are by now commonly used by the ATLAS and CMS Collaborations to interpret searches for missing transverse energy ($E_T^\mathrm{miss}$). The coherent use of these models sharpened the LHC DM search program, especially in the presentation of its results and their comparison to DM direct-detection (DD) and indirect-detection (ID) experiments. However, the community has been aware of the limitations of the DM simplified models, in particular the lack of theoretical consistency of some of them and their restricted phenomenology leading to the relevance of only a small subset of $E_T^\mathrm{miss}$ signatures. This document from the LHC Dark Matter Working Group identifies an example of a next-generation DM model, called $\textrm{2HDM+a}$, that provides the simplest theoretically consistent extension of the DM pseudoscalar simplified model. A comprehensive study of the phenomenology of the $\textrm{2HDM+a}$ model is presented, including a discussion of the rich and intricate pattern of mono-$X$ signatures and the relevance of other DM as well as non-DM experiments. Based on our discussions, a set of recommended scans are proposed to explore the parameter space of the $\textrm{2HDM+a}$ model through LHC searches. The exclusion limits obtained from the proposed scans can be consistently compared to the constraints on the $\textrm{2HDM+a}$ model that derive from DD, ID and the DM relic density.
Item Description:CERN-LPCC-2018-02
Gesehen am 21.01.2019
Physical Description:Online Resource