The Disk Substructures at High Angular Resolution Project (DSHARP): X. Multiple rings, a misaligned inner disk, and a bright arc in the disk around the T Tauri star HD 143006

We present a detailed analysis of new ALMA observations of the disk around the T-Tauri star HD 143006, which at 46 mas (7.6 au) resolution reveal new substructures in the 1.25 mm continuum emission. The disk resolves into a series of concentric rings and gaps together with a bright arc exterior to t...

Full description

Saved in:
Bibliographic Details
Main Authors: Pérez, Laura M. (Author) , Dullemond, Cornelis (Author)
Format: Article (Journal) Chapter/Article
Language:English
Published: 10 Dec 2018
In: Arxiv

Online Access:Verlag, Volltext: http://arxiv.org/abs/1812.04049
Get full text
Author Notes:Laura M. Pérez, Myriam Benisty, Sean M. Andrews, Andrea Isella, Cornelis P. Dullemond, Jane Huang, Nicolás T. Kurtovic, Viviana V. Guzmán, Zhaohuan Zhu, Tilman Birnstiel, Shangjia Zhang, John M. Carpenter, David J. Wilner, Luca Ricci, Xue-Ning Bai, Erik Weaver, and Karin I. Öberg
Description
Summary:We present a detailed analysis of new ALMA observations of the disk around the T-Tauri star HD 143006, which at 46 mas (7.6 au) resolution reveal new substructures in the 1.25 mm continuum emission. The disk resolves into a series of concentric rings and gaps together with a bright arc exterior to the rings that resembles hydrodynamics simulations of a vortex, and a bridge-like feature connecting the two innermost rings. Although our $^{12}$CO observations at similar spatial resolution do not show obvious substructure, they reveal an inner disk depleted of CO emission. From the continuum emission and the CO velocity field we find that the innermost ring has a higher inclination than the outermost rings and the arc. This is evidence for either a small ($\sim8^{\circ}$) or moderate ($\sim41^{\circ}$) misalignment between the inner and outer disk, depending on the specific orientation of the near/far sides of the inner/outer disk. We compare the observed substructures in the ALMA observations with recent scattered light data from VLT/SPHERE of this object. In particular, the location of narrow shadow lanes in the SPHERE image combined with pressure scale height estimates, favor a large misalignment of about $41^{\circ}$. We discuss our findings in the context of a dust-trapping vortex, planet-carved gaps, and a misaligned inner disk due to the presence of an inclined companion to HD 143006.
Item Description:Gesehen am 18.08.2020
Physical Description:Online Resource