On sign changes of eigenvalues of Siegel cusp forms of genus 2 in prime powers

We prove that under mild assumptions there are infinitely many sign changes in the sequence of eigenvalues of a genus 2 Siegel cuspidal eigenform supported on p^jn for a fixed j >= 1.

Saved in:
Bibliographic Details
Main Authors: Das, Soumya (Author) , Kohnen, Winfried (Author)
Format: Article (Journal)
Language:English
Published: 23 March 2018
In: Acta arithmetica
Year: 2018, Volume: 183, Pages: 167-172
ISSN:1730-6264
DOI:10.4064/aa170419-4-11
Online Access:Resolving-System, Volltext: http://dx.doi.org/10.4064/aa170419-4-11
Verlag, Volltext: https://www.impan.pl/en/publishing-house/journals-and-series/acta-arithmetica/all/183/2/112424/on-sign-changes-of-eigenvalues-of-siegel-cusp-forms-of-genus-2-in-prime-powers
Get full text
Author Notes:by Soumya Das (Bangalore) and Winfried Kohnen (Heidelberg)
Description
Summary:We prove that under mild assumptions there are infinitely many sign changes in the sequence of eigenvalues of a genus 2 Siegel cuspidal eigenform supported on p^jn for a fixed j >= 1.
Item Description:Gesehen am 08.02.2019
Physical Description:Online Resource
ISSN:1730-6264
DOI:10.4064/aa170419-4-11