Fine Selmer groups and isogeny invariance

We investigate fine Selmer groups for elliptic curves and for Galois representations over a number field. More specifically, we discuss a conjecture, which states that the fine Selmer group of an elliptic curve over the cyclotomic extension is a finitely generated Zp-module.

Saved in:
Bibliographic Details
Main Authors: Sujatha, Ramdorai (Author) , Witte, Malte (Author)
Format: Chapter/Article
Language:English
Published: 2016
In: Geometry, Algebra, Number Theory, and Their Information Technology Applications
Year: 2016, Pages: 419-444
DOI:10.1007/978-3-319-97379-1
Online Access:Resolving-System, Volltext: http://dx.doi.org/10.1007/978-3-319-97379-1
Verlag, Volltext: https://www.springer.com/gp/book/9783319973784
Get full text
Author Notes:R. Sujatha and M. Witte
Description
Summary:We investigate fine Selmer groups for elliptic curves and for Galois representations over a number field. More specifically, we discuss a conjecture, which states that the fine Selmer group of an elliptic curve over the cyclotomic extension is a finitely generated Zp-module.
Item Description:Der Beitrag hat keine eigene Frontpage
Gesehen am 15.02.2019
Physical Description:Online Resource
ISBN:9783319973791
DOI:10.1007/978-3-319-97379-1