The space of linear anti-symplectic involutions is a homogenous space

In this note we prove that the space of linear anti-symplectic involutions is the homogenous space Gl(n,R)\Sp(n). This result is motivated by the study of symmetric periodic orbits in the restricted 3-body problem.

Saved in:
Bibliographic Details
Main Authors: Albers, Peter (Author) , Frauenfelder, Urs (Author)
Format: Article (Journal)
Language:English
Published: December 7, 2012
In: Archiv der Mathematik
Year: 2012, Volume: 99, Issue: 6, Pages: 531-536
ISSN:1420-8938
DOI:10.1007/s00013-012-0461-4
Online Access:Resolving-System, Volltext: http://dx.doi.org/10.1007/s00013-012-0461-4
Verlag, Volltext: https://link.springer.com/article/10.1007%2Fs00013-012-0461-4
Get full text
Author Notes:Peter Albers and Urs Frauenfelder
Description
Summary:In this note we prove that the space of linear anti-symplectic involutions is the homogenous space Gl(n,R)\Sp(n). This result is motivated by the study of symmetric periodic orbits in the restricted 3-body problem.
Item Description:Gesehen am 18.02.2019
Physical Description:Online Resource
ISSN:1420-8938
DOI:10.1007/s00013-012-0461-4