The space of linear anti-symplectic involutions is a homogenous space
In this note we prove that the space of linear anti-symplectic involutions is the homogenous space Gl(n,R)\Sp(n). This result is motivated by the study of symmetric periodic orbits in the restricted 3-body problem.
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
December 7, 2012
|
| In: |
Archiv der Mathematik
Year: 2012, Jahrgang: 99, Heft: 6, Pages: 531-536 |
| ISSN: | 1420-8938 |
| DOI: | 10.1007/s00013-012-0461-4 |
| Online-Zugang: | Resolving-System, Volltext: http://dx.doi.org/10.1007/s00013-012-0461-4 Verlag, Volltext: https://link.springer.com/article/10.1007%2Fs00013-012-0461-4 |
| Verfasserangaben: | Peter Albers and Urs Frauenfelder |
| Zusammenfassung: | In this note we prove that the space of linear anti-symplectic involutions is the homogenous space Gl(n,R)\Sp(n). This result is motivated by the study of symmetric periodic orbits in the restricted 3-body problem. |
|---|---|
| Beschreibung: | Gesehen am 18.02.2019 |
| Beschreibung: | Online Resource |
| ISSN: | 1420-8938 |
| DOI: | 10.1007/s00013-012-0461-4 |