Exploring significant interactions in live news

News monitoring is of interest to detect current news and track developing stories, but also to explore what is being talked about. In this article, we present an approach to monitoring live feeds of news articles and detecting significant (co-)occurrences of terms compared to a learning background c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Schubert, Erich (VerfasserIn) , Spitz, Andreas (VerfasserIn) , Gertz, Michael (VerfasserIn)
Dokumenttyp: Kapitel/Artikel Konferenzschrift
Sprache:Englisch
Veröffentlicht: 2018
In: NewsIR: recent trends in news information retrieval

Online-Zugang:Verlag, H, Volltext: http://ceur-ws.org/Vol-2079/paper9.pdf
Volltext
Verfasserangaben:Erich Schubert, Andreas Spitz, Michael Gertz
Beschreibung
Zusammenfassung:News monitoring is of interest to detect current news and track developing stories, but also to explore what is being talked about. In this article, we present an approach to monitoring live feeds of news articles and detecting significant (co-)occurrences of terms compared to a learning background corpus. We visualize the result as a graph-structured semantic word cloud that uses a stochastic neighbor embedding (SNE) based layout and visualizes edges between related terms. We give visual examples of our prototype that processes news as they are crawled from dozens of news sites.
Beschreibung:Gesehen am 19.02.2019
Beschreibung:Online Resource