Multiplicity one for certain paramodular forms of genus two

We show that certain paramodular cuspidal automorphic irreducible representations of GSp(4,AQ), which are not CAP, are globally generic. This implies a multiplicity one theorem for paramodular cuspidal automorphic representations. Our proof relies on a reasonable hypothesis concerning the non-vanish...

Full description

Saved in:
Bibliographic Details
Main Authors: Rösner, Mirko (Author) , Weissauer, Rainer (Author)
Format: Chapter/Article Conference Paper
Language:English
Published: 16 October 2017
In: L-functions and Automorphic Forms
Year: 2017, Pages: 251-264
DOI:10.1007/978-3-319-69712-3_14
Online Access:Resolving-System, Volltext: http://dx.doi.org/10.1007/978-3-319-69712-3_14
Verlag, Volltext: https://link.springer.com/chapter/10.1007/978-3-319-69712-3_14
Get full text
Author Notes:Mirko Rösner, Rainer Weissauer
Description
Summary:We show that certain paramodular cuspidal automorphic irreducible representations of GSp(4,AQ), which are not CAP, are globally generic. This implies a multiplicity one theorem for paramodular cuspidal automorphic representations. Our proof relies on a reasonable hypothesis concerning the non-vanishing of central values of automorphic L-series.
Item Description:Gesehen am 19.02.2019
Physical Description:Online Resource
ISBN:9783319697123
DOI:10.1007/978-3-319-69712-3_14