Multiplicity one for certain paramodular forms of genus two

We show that certain paramodular cuspidal automorphic irreducible representations of GSp(4,AQ), which are not CAP, are globally generic. This implies a multiplicity one theorem for paramodular cuspidal automorphic representations. Our proof relies on a reasonable hypothesis concerning the non-vanish...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rösner, Mirko (VerfasserIn) , Weissauer, Rainer (VerfasserIn)
Dokumenttyp: Kapitel/Artikel Konferenzschrift
Sprache:Englisch
Veröffentlicht: 16 October 2017
In: L-functions and Automorphic Forms
Year: 2017, Pages: 251-264
DOI:10.1007/978-3-319-69712-3_14
Online-Zugang:Resolving-System, Volltext: http://dx.doi.org/10.1007/978-3-319-69712-3_14
Verlag, Volltext: https://link.springer.com/chapter/10.1007/978-3-319-69712-3_14
Volltext
Verfasserangaben:Mirko Rösner, Rainer Weissauer
Beschreibung
Zusammenfassung:We show that certain paramodular cuspidal automorphic irreducible representations of GSp(4,AQ), which are not CAP, are globally generic. This implies a multiplicity one theorem for paramodular cuspidal automorphic representations. Our proof relies on a reasonable hypothesis concerning the non-vanishing of central values of automorphic L-series.
Beschreibung:Gesehen am 19.02.2019
Beschreibung:Online Resource
ISBN:9783319697123
DOI:10.1007/978-3-319-69712-3_14