Milnor-Wood type inequalities for Higgs bundles

We explain how the generalized Milnor-Wood inequality of Burger and Iozzi for reductive representations of a cocompact complex-hyperbolic lattice into a Hermitian Lie group translates under the non-abelian Hodge correspondence into an inequality for topological invariants of the corresponding Higgs...

Full description

Saved in:
Bibliographic Details
Main Authors: Hartnick, Tobias (Author) , Ott, Andreas (Author)
Format: Article (Journal) Chapter/Article
Language:English
Published: 28 Sep 2018
In: Arxiv

Online Access:Verlag, Volltext: http://arxiv.org/abs/1105.4323
Get full text
Author Notes:Tobias Hartnick and Andreas Ott
Description
Summary:We explain how the generalized Milnor-Wood inequality of Burger and Iozzi for reductive representations of a cocompact complex-hyperbolic lattice into a Hermitian Lie group translates under the non-abelian Hodge correspondence into an inequality for topological invariants of the corresponding Higgs bundles. In this manner, we obtain in a uniform way a universal Milnor-Wood inequality for Higgs bundles over complex-hyperbolic manifolds of arbitrary dimensions and with arbitrary Hermitian structure group. This complements results of Biquard, Bradlow, Garcia-Prada, Gothen, Mundet, Rubio and Chaput, Koziarz, Maubon.
Item Description:Eine frühere Version dieses Artikels erschien am 22. Mai 2011 unter demselben Link
Gesehen am 25.02.2019
Physical Description:Online Resource