Invariant vectors for weak endoscopic and Saito-Kurokawa lifts to GSp(4)

Let A be the adele ring over a totally real number field F. For cohomological cuspidal automorphic irreducible representations of GSp(4,A) coming from weak endoscopic or Saito-Kurokawa Lifts we determine the local invariant spaces under the first principal congruence subgroup at the non-archimedean...

Full description

Saved in:
Bibliographic Details
Main Author: Rösner, Mirko (Author)
Format: Article (Journal) Chapter/Article
Language:English
Published: 9 Oct 2013
In: Arxiv

Online Access:Verlag, Volltext: http://arxiv.org/abs/1310.2552
Get full text
Author Notes:Mirko Rösner
Description
Summary:Let A be the adele ring over a totally real number field F. For cohomological cuspidal automorphic irreducible representations of GSp(4,A) coming from weak endoscopic or Saito-Kurokawa Lifts we determine the local invariant spaces under the first principal congruence subgroup at the non-archimedean places. For F=Q this gives rise to dimension formulas regarding certain subspaces of the inner cohomology of the genus two Shimura variety corresponding to the principal congruence subgroup level N=2. We prove the conjectures made by Bergstrøm, Faber and van der Geer in a recent paper.
Item Description:Last revised 3 Apr 2014
Gesehen am 25.02.2019
Physical Description:Online Resource