Invariant vectors for weak endoscopic and Saito-Kurokawa lifts to GSp(4)

Let A be the adele ring over a totally real number field F. For cohomological cuspidal automorphic irreducible representations of GSp(4,A) coming from weak endoscopic or Saito-Kurokawa Lifts we determine the local invariant spaces under the first principal congruence subgroup at the non-archimedean...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Rösner, Mirko (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 9 Oct 2013
In: Arxiv

Online-Zugang:Verlag, Volltext: http://arxiv.org/abs/1310.2552
Volltext
Verfasserangaben:Mirko Rösner
Beschreibung
Zusammenfassung:Let A be the adele ring over a totally real number field F. For cohomological cuspidal automorphic irreducible representations of GSp(4,A) coming from weak endoscopic or Saito-Kurokawa Lifts we determine the local invariant spaces under the first principal congruence subgroup at the non-archimedean places. For F=Q this gives rise to dimension formulas regarding certain subspaces of the inner cohomology of the genus two Shimura variety corresponding to the principal congruence subgroup level N=2. We prove the conjectures made by Bergstrøm, Faber and van der Geer in a recent paper.
Beschreibung:Last revised 3 Apr 2014
Gesehen am 25.02.2019
Beschreibung:Online Resource