Electrolyte-gated n-type transistors produced from aqueous inks of WS2 nanosheets

Solution-processed, low cost thin films of layered semiconductors such as transition metal dichalcogenides (TMDs) are potential candidates for future printed electronics. Here, n-type electrolyte-gated transistors (EGTs) based on porous WS2 nanosheet networks as the semiconductor are demonstrated. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Higgins, Thomas M. (VerfasserIn) , Matthiesen, Maik (VerfasserIn) , Grieger, Sebastian (VerfasserIn) , Synnatschke, Kevin (VerfasserIn) , Brohmann, Maximilian (VerfasserIn) , Rother, Marcel (VerfasserIn) , Backes, Claudia (VerfasserIn) , Zaumseil, Jana (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2019
In: Advanced functional materials
Year: 2018, Jahrgang: 29, Heft: 4
ISSN:1616-3028
DOI:10.1002/adfm.201804387
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1002/adfm.201804387
Verlag, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201804387
Volltext
Verfasserangaben:Thomas M. Higgins, Sean Finn, Maik Matthiesen, Sebastian Grieger, Kevin Synnatschke, Maximilian Brohmann, Marcel Rother, Claudia Backes, and Jana Zaumseil*
Beschreibung
Zusammenfassung:Solution-processed, low cost thin films of layered semiconductors such as transition metal dichalcogenides (TMDs) are potential candidates for future printed electronics. Here, n-type electrolyte-gated transistors (EGTs) based on porous WS2 nanosheet networks as the semiconductor are demonstrated. The WS2 nanosheets are liquid phase exfoliated to form aqueous/surfactant stabilized inks, and deposited at low temperatures (T < 120 °C) in ambient atmosphere by airbrushing. No solvent exchange, further additives, or complicated processing steps are required. While the EGTs are primarily n-type (electron accumulation), some hole transport is also observable. The EGTs show current modulations > 104 with low hysteresis, channel width-normalized on-conductances of up to 0.27 µS µm−1 and estimated electron mobilities around 0.01 cm2 V−1 s−1. In addition, the WS2 nanosheet networks exhibit relatively high volumetric capacitance values of 30 F cm−3. Charge transport within the network depends significantly on the applied lateral electric field and is thermally activated, which supports the notion that hopping between nanosheets is a major limiting factor for these networks and their future application.
Beschreibung:Published online: December 11, 2018
Gesehen am 04.03.2019
Im Text ist die Zahl "2" tiefgestellt
Beschreibung:Online Resource
ISSN:1616-3028
DOI:10.1002/adfm.201804387