Stable A1-connectivity over Dedekind schemes
We show that A^1-localization decreases the stable connectivity by at most one over a Dedekind scheme with infinite residue fields. For the proof, we establish a version of Gabber’s geometric presentation lemma over a henselian discrete valuation ring with infinite residue field.
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
24 March 2018
|
| In: |
Annals of K-Theory
Year: 2018, Volume: 3, Issue: 2, Pages: 331-367 |
| ISSN: | 2379-1691 |
| DOI: | 10.2140/akt.2018.3.331 |
| Online Access: | Resolving-System, Volltext: http://dx.doi.org/10.2140/akt.2018.3.331 Verlag, Volltext: https://msp.org/akt/2018/3-2/p06.xhtml |
| Author Notes: | Johannes Schmidt and Florian Strunk |
| Summary: | We show that A^1-localization decreases the stable connectivity by at most one over a Dedekind scheme with infinite residue fields. For the proof, we establish a version of Gabber’s geometric presentation lemma over a henselian discrete valuation ring with infinite residue field. |
|---|---|
| Item Description: | Im Titel wird das Zeichen A als mathematisches Zeichen für die algebraischen Zahlen dargestellt. Die Ziffer 1 ist hochgestellt Gesehen am 06.03.2019 |
| Physical Description: | Online Resource |
| ISSN: | 2379-1691 |
| DOI: | 10.2140/akt.2018.3.331 |