Stable A1-connectivity over Dedekind schemes

We show that A^1-localization decreases the stable connectivity by at most one over a Dedekind scheme with infinite residue fields. For the proof, we establish a version of Gabber’s geometric presentation lemma over a henselian discrete valuation ring with infinite residue field.

Saved in:
Bibliographic Details
Main Authors: Schmidt, Johannes (Author) , Strunk, Florian (Author)
Format: Article (Journal)
Language:English
Published: 24 March 2018
In: Annals of K-Theory
Year: 2018, Volume: 3, Issue: 2, Pages: 331-367
ISSN:2379-1691
DOI:10.2140/akt.2018.3.331
Online Access:Resolving-System, Volltext: http://dx.doi.org/10.2140/akt.2018.3.331
Verlag, Volltext: https://msp.org/akt/2018/3-2/p06.xhtml
Get full text
Author Notes:Johannes Schmidt and Florian Strunk
Description
Summary:We show that A^1-localization decreases the stable connectivity by at most one over a Dedekind scheme with infinite residue fields. For the proof, we establish a version of Gabber’s geometric presentation lemma over a henselian discrete valuation ring with infinite residue field.
Item Description:Im Titel wird das Zeichen A als mathematisches Zeichen für die algebraischen Zahlen dargestellt. Die Ziffer 1 ist hochgestellt
Gesehen am 06.03.2019
Physical Description:Online Resource
ISSN:2379-1691
DOI:10.2140/akt.2018.3.331