Stable A1-connectivity over Dedekind schemes
We show that A^1-localization decreases the stable connectivity by at most one over a Dedekind scheme with infinite residue fields. For the proof, we establish a version of Gabber’s geometric presentation lemma over a henselian discrete valuation ring with infinite residue field.
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
24 March 2018
|
| In: |
Annals of K-Theory
Year: 2018, Jahrgang: 3, Heft: 2, Pages: 331-367 |
| ISSN: | 2379-1691 |
| DOI: | 10.2140/akt.2018.3.331 |
| Online-Zugang: | Resolving-System, Volltext: http://dx.doi.org/10.2140/akt.2018.3.331 Verlag, Volltext: https://msp.org/akt/2018/3-2/p06.xhtml |
| Verfasserangaben: | Johannes Schmidt and Florian Strunk |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1588384861 | ||
| 003 | DE-627 | ||
| 005 | 20220815115707.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 190306s2018 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.2140/akt.2018.3.331 |2 doi | |
| 035 | |a (DE-627)1588384861 | ||
| 035 | |a (DE-576)518384861 | ||
| 035 | |a (DE-599)BSZ518384861 | ||
| 035 | |a (OCoLC)1341040762 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Schmidt, Johannes |e VerfasserIn |0 (DE-588)1031274146 |0 (DE-627)736105565 |0 (DE-576)378711172 |4 aut | |
| 245 | 1 | 0 | |a Stable A1-connectivity over Dedekind schemes |c Johannes Schmidt and Florian Strunk |
| 264 | 1 | |c 24 March 2018 | |
| 300 | |a 37 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Im Titel wird das Zeichen A als mathematisches Zeichen für die algebraischen Zahlen dargestellt. Die Ziffer 1 ist hochgestellt | ||
| 500 | |a Gesehen am 06.03.2019 | ||
| 520 | |a We show that A^1-localization decreases the stable connectivity by at most one over a Dedekind scheme with infinite residue fields. For the proof, we establish a version of Gabber’s geometric presentation lemma over a henselian discrete valuation ring with infinite residue field. | ||
| 700 | 1 | |a Strunk, Florian |e VerfasserIn |0 (DE-588)138799202 |0 (DE-627)703110187 |0 (DE-576)309099358 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Annals of K-Theory |d Berkeley, Calif. : Mathematical Sciences Publ., 2016 |g 3(2018), 2, Seite 331-367 |h Online-Ressource |w (DE-627)830132252 |w (DE-600)2826523-3 |w (DE-576)434743313 |x 2379-1691 |7 nnas |a Stable A1-connectivity over Dedekind schemes |
| 773 | 1 | 8 | |g volume:3 |g year:2018 |g number:2 |g pages:331-367 |g extent:37 |a Stable A1-connectivity over Dedekind schemes |
| 856 | 4 | 0 | |u http://dx.doi.org/10.2140/akt.2018.3.331 |x Resolving-System |x Verlag |3 Volltext |
| 856 | 4 | 0 | |u https://msp.org/akt/2018/3-2/p06.xhtml |x Verlag |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20190306 | ||
| 993 | |a Article | ||
| 994 | |a 2018 | ||
| 998 | |g 1031274146 |a Schmidt, Johannes |m 1031274146:Schmidt, Johannes |d 110000 |d 110100 |d 110000 |d 110400 |e 110000PS1031274146 |e 110100PS1031274146 |e 110000PS1031274146 |e 110400PS1031274146 |k 0/110000/ |k 1/110000/110100/ |k 0/110000/ |k 1/110000/110400/ | ||
| 999 | |a KXP-PPN1588384861 |e 3057547443 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"language":["eng"],"recId":"1588384861","note":["Im Titel wird das Zeichen A als mathematisches Zeichen für die algebraischen Zahlen dargestellt. Die Ziffer 1 ist hochgestellt","Gesehen am 06.03.2019"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"person":[{"roleDisplay":"VerfasserIn","display":"Schmidt, Johannes","role":"aut","family":"Schmidt","given":"Johannes"},{"given":"Florian","family":"Strunk","role":"aut","roleDisplay":"VerfasserIn","display":"Strunk, Florian"}],"title":[{"title_sort":"Stable A1-connectivity over Dedekind schemes","title":"Stable A1-connectivity over Dedekind schemes"}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisherPlace":"Berkeley, Calif.","publisher":"Mathematical Sciences Publ.","dateIssuedKey":"2016","dateIssuedDisp":"2016-"}],"id":{"zdb":["2826523-3"],"eki":["830132252"],"issn":["2379-1691"]},"type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 16.03.18"],"disp":"Stable A1-connectivity over Dedekind schemesAnnals of K-Theory","language":["eng"],"recId":"830132252","pubHistory":["2016 -"],"part":{"extent":"37","volume":"3","text":"3(2018), 2, Seite 331-367","pages":"331-367","issue":"2","year":"2018"},"title":[{"title_sort":"Annals of K-Theory","subtitle":"a journal of the K-Theory Foundation","title":"Annals of K-Theory"}]}],"physDesc":[{"extent":"37 S."}],"name":{"displayForm":["Johannes Schmidt and Florian Strunk"]},"id":{"eki":["1588384861"],"doi":["10.2140/akt.2018.3.331"]},"origin":[{"dateIssuedKey":"2018","dateIssuedDisp":"24 March 2018"}]} | ||
| SRT | |a SCHMIDTJOHSTABLEA1CO2420 | ||