Probabilistic correlation clustering and image partitioning using perturbed multicuts

We exploit recent progress on globally optimal MAP inference by integer programming and perturbation-based approximations of the log-partition function. This enables to locally represent uncertainty of image partitions by approximate marginal distributions in a mathematically substantiated way, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kappes, Jörg Hendrik (VerfasserIn) , Swoboda, Paul (VerfasserIn) , Savchynskyy, Bogdan (VerfasserIn) , Schnörr, Christoph (VerfasserIn)
Dokumenttyp: Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 28 April 2015
In: Scale Space and Variational Methods in Computer Vision
Year: 2015, Pages: 231-242
DOI:10.1007/978-3-319-18461-6_19
Online-Zugang:Resolving-System, Volltext: http://dx.doi.org/10.1007/978-3-319-18461-6_19
Verlag, Volltext: https://link.springer.com/chapter/10.1007/978-3-319-18461-6_19
Volltext
Verfasserangaben:Jörg Hendrik Kappes, Paul Swoboda, Bogdan Savchynskyy, Tamir Hazan, Christoph Schnörr
Beschreibung
Zusammenfassung:We exploit recent progress on globally optimal MAP inference by integer programming and perturbation-based approximations of the log-partition function. This enables to locally represent uncertainty of image partitions by approximate marginal distributions in a mathematically substantiated way, and to rectify local data term cues so as to close contours and to obtain valid partitions. Our approach works for any graphically represented problem instance of correlation clustering, which is demonstrated by an additional social network example.
Beschreibung:Gesehen am 07.03.2019
Beschreibung:Online Resource
ISBN:9783319184616
DOI:10.1007/978-3-319-18461-6_19