Magic density in a self-rephasing ensemble of trapped ultracold atoms
We investigate the collective spin dynamics of a self-rephasing bosonic ensemble of 87Rb trapped in a one-dimensional vertical optical lattice. We show that the combination of the frequency shifts induced by atomic interactions and inhomogeneous dephasing, together with the spin self-rephasing mecha...
Gespeichert in:
| 1. Verfasser: | |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
27 February 2019
|
| In: |
Physical review
Year: 2019, Jahrgang: 99, Heft: 2 |
| ISSN: | 2469-9934 |
| DOI: | 10.1103/PhysRevA.99.023627 |
| Online-Zugang: | Verlag, Volltext: https://doi.org/10.1103/PhysRevA.99.023627 Verlag, Volltext: https://link.aps.org/doi/10.1103/PhysRevA.99.023627 |
| Verfasserangaben: | A. Bonnin, C. Solaro, X. Alauze, and F. Pereira dos Santos |
| Zusammenfassung: | We investigate the collective spin dynamics of a self-rephasing bosonic ensemble of 87Rb trapped in a one-dimensional vertical optical lattice. We show that the combination of the frequency shifts induced by atomic interactions and inhomogeneous dephasing, together with the spin self-rephasing mechanism, leads to the existence of a “magic density”: i.e., a singular operating point where the clock transition is first-order insensitive to density fluctuations. This feature is very appealing for improving the stability of quantum sensors based on trapped pseudo-spin-1/2 ensembles. Ramsey spectroscopy of the |5s2S1/2,F=1,mF=0⟩→|5s2S1/2,F=2,mF=0⟩ hyperfine transition is in qualitative agreement with a numerical model based on coupled Bloch equations of motion for energy-dependent spin vectors. |
|---|---|
| Beschreibung: | Gesehen am 08.04.2019 |
| Beschreibung: | Online Resource |
| ISSN: | 2469-9934 |
| DOI: | 10.1103/PhysRevA.99.023627 |