Magic density in a self-rephasing ensemble of trapped ultracold atoms

We investigate the collective spin dynamics of a self-rephasing bosonic ensemble of 87Rb trapped in a one-dimensional vertical optical lattice. We show that the combination of the frequency shifts induced by atomic interactions and inhomogeneous dephasing, together with the spin self-rephasing mecha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Bonnin, Alexis (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 27 February 2019
In: Physical review
Year: 2019, Jahrgang: 99, Heft: 2
ISSN:2469-9934
DOI:10.1103/PhysRevA.99.023627
Online-Zugang:Verlag, Volltext: https://doi.org/10.1103/PhysRevA.99.023627
Verlag, Volltext: https://link.aps.org/doi/10.1103/PhysRevA.99.023627
Volltext
Verfasserangaben:A. Bonnin, C. Solaro, X. Alauze, and F. Pereira dos Santos
Beschreibung
Zusammenfassung:We investigate the collective spin dynamics of a self-rephasing bosonic ensemble of 87Rb trapped in a one-dimensional vertical optical lattice. We show that the combination of the frequency shifts induced by atomic interactions and inhomogeneous dephasing, together with the spin self-rephasing mechanism, leads to the existence of a “magic density”: i.e., a singular operating point where the clock transition is first-order insensitive to density fluctuations. This feature is very appealing for improving the stability of quantum sensors based on trapped pseudo-spin-1/2 ensembles. Ramsey spectroscopy of the |5s2S1/2,F=1,mF=0⟩→|5s2S1/2,F=2,mF=0⟩ hyperfine transition is in qualitative agreement with a numerical model based on coupled Bloch equations of motion for energy-dependent spin vectors.
Beschreibung:Gesehen am 08.04.2019
Beschreibung:Online Resource
ISSN:2469-9934
DOI:10.1103/PhysRevA.99.023627