Enhanced in vivo-imaging in medaka by optimized anaesthesia, fluorescent protein selection and removal of pigmentation

Fish are ideally suited for in vivo-imaging due to their transparency at early stages combined with a large genetic toolbox. Key challenges to further advance imaging are fluorophore selection, immobilization of the specimen and approaches to eliminate pigmentation. We addressed all three and identi...

Full description

Saved in:
Bibliographic Details
Main Authors: Lischik, Colin Q. (Author) , Adelmann, Leonie (Author) , Wittbrodt, Joachim (Author)
Format: Article (Journal)
Language:English
Published: March 7, 2019
In: PLOS ONE
Year: 2019, Volume: 14, Issue: 3, Pages: e0212956
ISSN:1932-6203
DOI:10.1371/journal.pone.0212956
Online Access:Verlag, Volltext: https://doi.org/10.1371/journal.pone.0212956
Verlag, Volltext: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0212956
Get full text
Author Notes:Colin Q. Lischik, Leonie Adelmann, Joachim Wittbrodt
Description
Summary:Fish are ideally suited for in vivo-imaging due to their transparency at early stages combined with a large genetic toolbox. Key challenges to further advance imaging are fluorophore selection, immobilization of the specimen and approaches to eliminate pigmentation. We addressed all three and identified the fluorophores and anaesthesia of choice by high throughput time-lapse imaging. Our results indicate that eGFP and mCherry are the best conservative choices for in vivo-fluorescence experiments, when availability of well-established antibodies and nanobodies matters. Still, mVenusNB and mGFPmut2 delivered highest absolute fluorescence intensities in vivo. Immobilization is of key importance during extended in vivo imaging. Here, traditional approaches are outperformed by mRNA injection of α-Bungarotoxin which allows a complete and reversible, transient immobilization. In combination with fully transparent juvenile and adult fish established by the targeted inactivation of both, oca2 and pnp4a via CRISPR/Cas9-mediated gene editing in medaka we could dramatically improve the state-of-the art imaging conditions in post-embryonic fish, now enabling light-sheet microscopy of the growing retina, brain, gills and inner organs in the absence of side effects caused by anaesthetic drugs or pigmentation.
Item Description:Gesehen am 25.04.2019
Physical Description:Online Resource
ISSN:1932-6203
DOI:10.1371/journal.pone.0212956