Two-dimensional non-LTE O I 777 nm line formation in radiation hydrodynamics simulations of Cepheid atmospheres

Oxygen abundance measurements are important for understanding stellar structure and evolution. Measured in Cepheids, they further provide clues on the metallicity gradient and chemo-dynamical evolution in the Galaxy. However, most of the abundance analyses of Cepheids to date have been based on one-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Vasilyev, Valeriy (VerfasserIn) , Ludwig, Hans-Günter (VerfasserIn) , Lemasle, Bertrand (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 16 April 2019
In: Astronomy and astrophysics
Year: 2019, Jahrgang: 624, Pages: 1-9
ISSN:1432-0746
DOI:10.1051/0004-6361/201935067
Online-Zugang:Verlag, Volltext: https://doi.org/10.1051/0004-6361/201935067
Verlag, Volltext: https://www.aanda.org/articles/aa/abs/2019/04/aa35067-19/aa35067-19.html
Volltext
Verfasserangaben:V. Vasilyev, A.M. Amarsi, H.-G. Ludwig, and B. Lemasle
Beschreibung
Zusammenfassung:Oxygen abundance measurements are important for understanding stellar structure and evolution. Measured in Cepheids, they further provide clues on the metallicity gradient and chemo-dynamical evolution in the Galaxy. However, most of the abundance analyses of Cepheids to date have been based on one-dimensional (1D) hydrostatic model atmospheres. Here, we test the validity of this approach for the key oxygen abundance diagnostic, the O I 777 nm triplet lines. We carry out two-dimensional (2D) non-LTE radiative transfer calculations across two different 2D radiation hydrodynamics simulations of Cepheid atmospheres, having stellar parameters of <i>T<i/><sub>eff<sub/> = 5600 K, solar chemical compositions, and log <i>g<i/> = 1.5 and 2.0, corresponding to pulsation periods of 9 and 3 days, respectively. We find that the 2D non-LTE versus 1D LTE abundance differences range from −1.0 to −0.25 dex depending on pulsational phase. The 2D non-LTE versus 1D non-LTE abundance differences range from −0.2 to 0.8 dex. The abundance differences are smallest when the Cepheid atmospheres are closest to hydrostatic equilibrium, corresponding to phases of around 0.3–0.8, and we recommend these phases for observers deriving the oxygen abundance from O I 777 nm triplet with 1D hydrostatic models.
Beschreibung:Gesehen am 13.05.2019
Beschreibung:Online Resource
ISSN:1432-0746
DOI:10.1051/0004-6361/201935067