High-contrast interference of ultracold fermions

Many-body interference between indistinguishable particles can give rise to strong correlations rooted in quantum statistics. We study such Hanbury Brown–Twiss-type correlations for number states of ultracold massive fermions. Using deterministically prepared 6Li atoms in optical tweezers, we measur...

Full description

Saved in:
Bibliographic Details
Main Authors: Preiss, Philipp (Author) , Becher, Jan Hendrik Willibald (Author) , Klemt, Ralf (Author) , Klinkhamer, Vincent M. (Author) , Bergschneider, Andrea (Author) , Defenu, Nicolò (Author) , Jochim, Selim (Author)
Format: Article (Journal)
Language:English
Published: 12 April 2019
In: Physical review letters
Year: 2019, Volume: 122, Issue: 14, Pages: 1-6
ISSN:1079-7114
DOI:10.1103/PhysRevLett.122.143602
Online Access:Verlag, Volltext: https://doi.org/10.1103/PhysRevLett.122.143602
Verlag, Volltext: https://link.aps.org/doi/10.1103/PhysRevLett.122.143602
Get full text
Author Notes:Philipp M. Preiss, Jan Hendrik Becher, Ralf Klemt, Vincent Klinkhamer, Andrea Bergschneider, Nicolò Defenu, and Selim Jochim
Description
Summary:Many-body interference between indistinguishable particles can give rise to strong correlations rooted in quantum statistics. We study such Hanbury Brown–Twiss-type correlations for number states of ultracold massive fermions. Using deterministically prepared 6Li atoms in optical tweezers, we measure momentum correlations using a single-atom sensitive time-of-flight imaging scheme. The experiment combines on-demand state preparation of highly indistinguishable particles with high-fidelity detection, giving access to two- and three-body correlations in fields of fixed fermionic particle number. We find that pairs of atoms interfere with a contrast close to 80%. We show that second-order density correlations arise from contributions from all two-particle pairs and detect intrinsic third-order correlations.
Item Description:Gesehen am 20.05.2019
Physical Description:Online Resource
ISSN:1079-7114
DOI:10.1103/PhysRevLett.122.143602