Expansion for moments of regression quantiles with applications to nonparametric testing

We discuss nonparametric tests for parametric specifications of regression quantiles. The test is based on the comparison of parametric and nonparametric fits of these quantiles. The nonparametric fit is a Nadaraya-Watson quantile smoothing estimator. An asymptotic treatment of the test statistic re...

Full description

Saved in:
Bibliographic Details
Main Authors: Mammen, Enno (Author) , Van Keilegom, Ingrid (Author) , Yu, Kyusang (Author)
Format: Article (Journal)
Language:English
Published: 6 March 2019
In: Bernoulli
Year: 2019, Volume: 25, Issue: 2, Pages: 793-827
ISSN:1573-9759
DOI:10.3150/17-BEJ986
Online Access:Verlag, Volltext: https://doi.org/10.3150/17-BEJ986
Verlag, Volltext: https://projecteuclid.org/euclid.bj/1551862835
Get full text
Author Notes:Enno Mammen, Ingrid Van Keilegom, Kyusang Yu
Description
Summary:We discuss nonparametric tests for parametric specifications of regression quantiles. The test is based on the comparison of parametric and nonparametric fits of these quantiles. The nonparametric fit is a Nadaraya-Watson quantile smoothing estimator. An asymptotic treatment of the test statistic requires the development of new mathematical arguments. An approach that makes only use of plugging in a Bahadur expansion of the nonparametric estimator is not satisfactory. It requires too strong conditions on the dimension and the choice of the bandwidth. Our alternative mathematical approach requires the calculation of moments of Nadaraya-Watson quantile regression estimators. This calculation is done by application of higher order Edgeworth expansions.
Item Description:Gesehen am 23.05.2019
Physical Description:Online Resource
ISSN:1573-9759
DOI:10.3150/17-BEJ986