Orderability, contact non-squeezing, and Rabinowitz Floer homology

We study Liouville fillable contact manifolds $(\Sigma,\xi)$ with non-zero Rabinowitz Floer homology and assign spectral numbers to paths of contactomorphisms. As a consequence we prove that $\widetilde{\mathrm{Cont}_0}(\Sigma,\xi)$ is orderable in the sense of Eliashberg and Polterovich. This provi...

Full description

Saved in:
Bibliographic Details
Main Authors: Albers, Peter (Author) , Merry, Will J. (Author)
Format: Article (Journal)
Language:English
Published: 2018
In: The journal of symplectic geometry
Year: 2018, Volume: 16, Issue: 6, Pages: 1481-1547
ISSN:1540-2347
Online Access:Resolving-System, Volltext: https://dx.doi/10.4310/JSG.2018.v16.n6.a1
Get full text
Author Notes:Peter Albers, Will J. Merry
Description
Summary:We study Liouville fillable contact manifolds $(\Sigma,\xi)$ with non-zero Rabinowitz Floer homology and assign spectral numbers to paths of contactomorphisms. As a consequence we prove that $\widetilde{\mathrm{Cont}_0}(\Sigma,\xi)$ is orderable in the sense of Eliashberg and Polterovich. This provides a new class of orderable contact manifolds. If the contact manifold is in addition periodic or a prequantization space
Item Description:Doi funktioniert nicht
Gesehen am 01.07.2019
Physical Description:Online Resource
ISSN:1540-2347