Orderability, contact non-squeezing, and Rabinowitz Floer homology
We study Liouville fillable contact manifolds $(\Sigma,\xi)$ with non-zero Rabinowitz Floer homology and assign spectral numbers to paths of contactomorphisms. As a consequence we prove that $\widetilde{\mathrm{Cont}_0}(\Sigma,\xi)$ is orderable in the sense of Eliashberg and Polterovich. This provi...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
2018
|
| In: |
The journal of symplectic geometry
Year: 2018, Jahrgang: 16, Heft: 6, Pages: 1481-1547 |
| ISSN: | 1540-2347 |
| Online-Zugang: | Resolving-System, Volltext: https://dx.doi/10.4310/JSG.2018.v16.n6.a1 |
| Verfasserangaben: | Peter Albers, Will J. Merry |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 166813389X | ||
| 003 | DE-627 | ||
| 005 | 20220816180737.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 190701s2018 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.4310/JSG.2018.v16.n6.a1 |2 doi | |
| 035 | |a (DE-627)166813389X | ||
| 035 | |a (DE-599)KXP166813389X | ||
| 035 | |a (OCoLC)1341231493 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 29 |2 sdnb | ||
| 100 | 1 | |a Albers, Peter |d 1975- |e VerfasserIn |0 (DE-588)129903817 |0 (DE-627)483350362 |0 (DE-576)188953140 |4 aut | |
| 245 | 1 | 0 | |a Orderability, contact non-squeezing, and Rabinowitz Floer homology |c Peter Albers, Will J. Merry |
| 264 | 1 | |c 2018 | |
| 300 | |a 67 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Doi funktioniert nicht | ||
| 500 | |a Gesehen am 01.07.2019 | ||
| 520 | |a We study Liouville fillable contact manifolds $(\Sigma,\xi)$ with non-zero Rabinowitz Floer homology and assign spectral numbers to paths of contactomorphisms. As a consequence we prove that $\widetilde{\mathrm{Cont}_0}(\Sigma,\xi)$ is orderable in the sense of Eliashberg and Polterovich. This provides a new class of orderable contact manifolds. If the contact manifold is in addition periodic or a prequantization space |m \times S^1$ for $M$ a Liouville manifold, then we construct a contact capacity. This can be used to prove a general non-squeezing result, which amongst other examples in particular recovers the beautiful non-squeezing results from [EKP06]. | ||
| 650 | 4 | |a Mathematics - Dynamical Systems | |
| 650 | 4 | |a Mathematics - Symplectic Geometry | |
| 700 | 1 | |a Merry, Will J. |e VerfasserIn |0 (DE-588)1154540073 |0 (DE-627)1015922295 |0 (DE-576)501084657 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t The journal of symplectic geometry |d [Somerville, Mass.] : Internat. Press, 2001 |g 16(2018), 6, Seite 1481-1547 |h Online-Ressource |w (DE-627)477528708 |w (DE-600)2173470-7 |w (DE-576)279448015 |x 1540-2347 |7 nnas |a Orderability, contact non-squeezing, and Rabinowitz Floer homology |
| 773 | 1 | 8 | |g volume:16 |g year:2018 |g number:6 |g pages:1481-1547 |g extent:67 |a Orderability, contact non-squeezing, and Rabinowitz Floer homology |
| 856 | 4 | 0 | |u https://dx.doi/10.4310/JSG.2018.v16.n6.a1 |x Resolving-System |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20190701 | ||
| 993 | |a Article | ||
| 994 | |a 2018 | ||
| 998 | |g 129903817 |a Albers, Peter |m 129903817:Albers, Peter |d 110000 |d 110100 |d 110000 |d 110400 |e 110000PA129903817 |e 110100PA129903817 |e 110000PA129903817 |e 110400PA129903817 |k 0/110000/ |k 1/110000/110100/ |k 0/110000/ |k 1/110000/110400/ |p 1 |x j | ||
| 999 | |a KXP-PPN166813389X |e 3490296877 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"title":[{"title_sort":"Orderability, contact non-squeezing, and Rabinowitz Floer homology","title":"Orderability, contact non-squeezing, and Rabinowitz Floer homology"}],"person":[{"family":"Albers","given":"Peter","roleDisplay":"VerfasserIn","display":"Albers, Peter","role":"aut"},{"roleDisplay":"VerfasserIn","display":"Merry, Will J.","role":"aut","family":"Merry","given":"Will J."}],"recId":"166813389X","language":["eng"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Doi funktioniert nicht","Gesehen am 01.07.2019"],"id":{"eki":["166813389X"],"doi":["10.4310/JSG.2018.v16.n6.a1"]},"origin":[{"dateIssuedKey":"2018","dateIssuedDisp":"2018"}],"name":{"displayForm":["Peter Albers, Will J. Merry"]},"relHost":[{"title":[{"title_sort":"journal of symplectic geometry","subtitle":"JSG","title":"The journal of symplectic geometry"}],"titleAlt":[{"title":"JSG"}],"part":{"extent":"67","text":"16(2018), 6, Seite 1481-1547","volume":"16","issue":"6","pages":"1481-1547","year":"2018"},"pubHistory":["1.2001/03 -"],"language":["eng"],"recId":"477528708","disp":"Orderability, contact non-squeezing, and Rabinowitz Floer homologyThe journal of symplectic geometry","type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 28.02.25"],"id":{"zdb":["2173470-7"],"eki":["477528708"],"issn":["1540-2347"]},"origin":[{"publisherPlace":"[Somerville, Mass.]","dateIssuedDisp":"2001-","publisher":"Internat. Press","dateIssuedKey":"2001"}],"physDesc":[{"extent":"Online-Ressource"}]}],"physDesc":[{"extent":"67 S."}]} | ||
| SRT | |a ALBERSPETEORDERABILI2018 | ||