Orderability, contact non-squeezing, and Rabinowitz Floer homology

We study Liouville fillable contact manifolds $(\Sigma,\xi)$ with non-zero Rabinowitz Floer homology and assign spectral numbers to paths of contactomorphisms. As a consequence we prove that $\widetilde{\mathrm{Cont}_0}(\Sigma,\xi)$ is orderable in the sense of Eliashberg and Polterovich. This provi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Albers, Peter (VerfasserIn) , Merry, Will J. (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2018
In: The journal of symplectic geometry
Year: 2018, Jahrgang: 16, Heft: 6, Pages: 1481-1547
ISSN:1540-2347
Online-Zugang:Resolving-System, Volltext: https://dx.doi/10.4310/JSG.2018.v16.n6.a1
Volltext
Verfasserangaben:Peter Albers, Will J. Merry

MARC

LEADER 00000caa a2200000 c 4500
001 166813389X
003 DE-627
005 20220816180737.0
007 cr uuu---uuuuu
008 190701s2018 xx |||||o 00| ||eng c
024 7 |a 10.4310/JSG.2018.v16.n6.a1  |2 doi 
035 |a (DE-627)166813389X 
035 |a (DE-599)KXP166813389X 
035 |a (OCoLC)1341231493 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Albers, Peter  |d 1975-  |e VerfasserIn  |0 (DE-588)129903817  |0 (DE-627)483350362  |0 (DE-576)188953140  |4 aut 
245 1 0 |a Orderability, contact non-squeezing, and Rabinowitz Floer homology  |c Peter Albers, Will J. Merry 
264 1 |c 2018 
300 |a 67 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Doi funktioniert nicht 
500 |a Gesehen am 01.07.2019 
520 |a We study Liouville fillable contact manifolds $(\Sigma,\xi)$ with non-zero Rabinowitz Floer homology and assign spectral numbers to paths of contactomorphisms. As a consequence we prove that $\widetilde{\mathrm{Cont}_0}(\Sigma,\xi)$ is orderable in the sense of Eliashberg and Polterovich. This provides a new class of orderable contact manifolds. If the contact manifold is in addition periodic or a prequantization space  |m \times S^1$ for $M$ a Liouville manifold, then we construct a contact capacity. This can be used to prove a general non-squeezing result, which amongst other examples in particular recovers the beautiful non-squeezing results from [EKP06]. 
650 4 |a Mathematics - Dynamical Systems 
650 4 |a Mathematics - Symplectic Geometry 
700 1 |a Merry, Will J.  |e VerfasserIn  |0 (DE-588)1154540073  |0 (DE-627)1015922295  |0 (DE-576)501084657  |4 aut 
773 0 8 |i Enthalten in  |t The journal of symplectic geometry  |d [Somerville, Mass.] : Internat. Press, 2001  |g 16(2018), 6, Seite 1481-1547  |h Online-Ressource  |w (DE-627)477528708  |w (DE-600)2173470-7  |w (DE-576)279448015  |x 1540-2347  |7 nnas  |a Orderability, contact non-squeezing, and Rabinowitz Floer homology 
773 1 8 |g volume:16  |g year:2018  |g number:6  |g pages:1481-1547  |g extent:67  |a Orderability, contact non-squeezing, and Rabinowitz Floer homology 
856 4 0 |u https://dx.doi/10.4310/JSG.2018.v16.n6.a1  |x Resolving-System  |3 Volltext 
951 |a AR 
992 |a 20190701 
993 |a Article 
994 |a 2018 
998 |g 129903817  |a Albers, Peter  |m 129903817:Albers, Peter  |d 110000  |d 110100  |d 110000  |d 110400  |e 110000PA129903817  |e 110100PA129903817  |e 110000PA129903817  |e 110400PA129903817  |k 0/110000/  |k 1/110000/110100/  |k 0/110000/  |k 1/110000/110400/  |p 1  |x j 
999 |a KXP-PPN166813389X  |e 3490296877 
BIB |a Y 
SER |a journal 
JSO |a {"title":[{"title_sort":"Orderability, contact non-squeezing, and Rabinowitz Floer homology","title":"Orderability, contact non-squeezing, and Rabinowitz Floer homology"}],"person":[{"family":"Albers","given":"Peter","roleDisplay":"VerfasserIn","display":"Albers, Peter","role":"aut"},{"roleDisplay":"VerfasserIn","display":"Merry, Will J.","role":"aut","family":"Merry","given":"Will J."}],"recId":"166813389X","language":["eng"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Doi funktioniert nicht","Gesehen am 01.07.2019"],"id":{"eki":["166813389X"],"doi":["10.4310/JSG.2018.v16.n6.a1"]},"origin":[{"dateIssuedKey":"2018","dateIssuedDisp":"2018"}],"name":{"displayForm":["Peter Albers, Will J. Merry"]},"relHost":[{"title":[{"title_sort":"journal of symplectic geometry","subtitle":"JSG","title":"The journal of symplectic geometry"}],"titleAlt":[{"title":"JSG"}],"part":{"extent":"67","text":"16(2018), 6, Seite 1481-1547","volume":"16","issue":"6","pages":"1481-1547","year":"2018"},"pubHistory":["1.2001/03 -"],"language":["eng"],"recId":"477528708","disp":"Orderability, contact non-squeezing, and Rabinowitz Floer homologyThe journal of symplectic geometry","type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 28.02.25"],"id":{"zdb":["2173470-7"],"eki":["477528708"],"issn":["1540-2347"]},"origin":[{"publisherPlace":"[Somerville, Mass.]","dateIssuedDisp":"2001-","publisher":"Internat. Press","dateIssuedKey":"2001"}],"physDesc":[{"extent":"Online-Ressource"}]}],"physDesc":[{"extent":"67 S."}]} 
SRT |a ALBERSPETEORDERABILI2018