On the Ramanujan-Petersson conjecture for modular forms of half-integral weight

We investigate the (still unknown) Ramanujan-Petersson conjecture about the growth of the Fourier coefficients of cusp forms of half-integral weight and prove that it is optimal, at least for newforms in the plus space.

Saved in:
Bibliographic Details
Main Authors: Gun, Sanoli (Author) , Kohnen, Winfried (Author)
Format: Article (Journal)
Language:English
Published: 19.02.2019
In: Forum mathematicum
Year: 2019, Volume: 31, Issue: 3, Pages: 703-711
ISSN:1435-5337
DOI:10.1515/forum-2018-0179
Online Access:Verlag, Volltext: https://doi.org/10.1515/forum-2018-0179
Verlag, Volltext: https://www.degruyterbrill.com/view/j/forum.2019.31.issue-3/forum-2018-0179/forum-2018-0179.xml
Get full text
Author Notes:Sanoli Gun, Winfried Kohnen
Description
Summary:We investigate the (still unknown) Ramanujan-Petersson conjecture about the growth of the Fourier coefficients of cusp forms of half-integral weight and prove that it is optimal, at least for newforms in the plus space.
Item Description:Gesehen am 03.07.2019
Physical Description:Online Resource
ISSN:1435-5337
DOI:10.1515/forum-2018-0179