Spin dephasing around randomly distributed vessels

We analyze the gradient echo signal in the presence of blood vessel networks. Both, diffusion and susceptibility effects are analytically emphasized within the Bloch-Torrey equation. Solving this equation, we present the first exact description of the local magnetization around a single vessel. This...

Full description

Saved in:
Bibliographic Details
Main Authors: Buschle, Lukas R. (Author) , Kurz, Felix T. (Author) , Schlemmer, Heinz-Peter (Author) , Ziener, Christian H. (Author)
Format: Article (Journal)
Language:English
Published: 2019
In: Journal of magnetic resonance
Year: 2018, Volume: 299, Pages: 12-20
ISSN:1096-0856
DOI:10.1016/j.jmr.2018.11.014
Online Access:Verlag, Volltext: https://doi.org/10.1016/j.jmr.2018.11.014
Verlag, Volltext: http://www.sciencedirect.com/science/article/pii/S1090780718303227
Get full text
Author Notes:L.R. Buschle, F.T. Kurz, T. Kampf, H.P. Schlemmer, C.H. Ziener
Description
Summary:We analyze the gradient echo signal in the presence of blood vessel networks. Both, diffusion and susceptibility effects are analytically emphasized within the Bloch-Torrey equation. Solving this equation, we present the first exact description of the local magnetization around a single vessel. This allows us to deduce the gradient echo signal of parallel vessels randomly distributed in a plane, which is valid for arbitrary mean vessel diameters in the range of physiological relevant blood volume fractions. Thus, the results are potentially relevant for gradient echo measurements of blood vessel networks with arbitrary vessel size.
Item Description:Available online 30 November 2018
Gesehen am 11.07.2019
Physical Description:Online Resource
ISSN:1096-0856
DOI:10.1016/j.jmr.2018.11.014