Spin dephasing around randomly distributed vessels

We analyze the gradient echo signal in the presence of blood vessel networks. Both, diffusion and susceptibility effects are analytically emphasized within the Bloch-Torrey equation. Solving this equation, we present the first exact description of the local magnetization around a single vessel. This...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Buschle, Lukas R. (VerfasserIn) , Kurz, Felix T. (VerfasserIn) , Schlemmer, Heinz-Peter (VerfasserIn) , Ziener, Christian H. (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2019
In: Journal of magnetic resonance
Year: 2018, Jahrgang: 299, Pages: 12-20
ISSN:1096-0856
DOI:10.1016/j.jmr.2018.11.014
Online-Zugang:Verlag, Volltext: https://doi.org/10.1016/j.jmr.2018.11.014
Verlag, Volltext: http://www.sciencedirect.com/science/article/pii/S1090780718303227
Volltext
Verfasserangaben:L.R. Buschle, F.T. Kurz, T. Kampf, H.P. Schlemmer, C.H. Ziener
Beschreibung
Zusammenfassung:We analyze the gradient echo signal in the presence of blood vessel networks. Both, diffusion and susceptibility effects are analytically emphasized within the Bloch-Torrey equation. Solving this equation, we present the first exact description of the local magnetization around a single vessel. This allows us to deduce the gradient echo signal of parallel vessels randomly distributed in a plane, which is valid for arbitrary mean vessel diameters in the range of physiological relevant blood volume fractions. Thus, the results are potentially relevant for gradient echo measurements of blood vessel networks with arbitrary vessel size.
Beschreibung:Available online 30 November 2018
Gesehen am 11.07.2019
Beschreibung:Online Resource
ISSN:1096-0856
DOI:10.1016/j.jmr.2018.11.014