Activating the regenerative potential of Müller glia cells in a regeneration-deficient retina

Regeneration responses in animals are widespread across phyla. To identify molecular players that confer regenerative capacities to non-regenerative species is of key relevance for basic research and translational approaches. Here, we report a differential response in retinal regeneration between me...

Full description

Saved in:
Bibliographic Details
Main Authors: Lust, Katharina (Author) , Wittbrodt, Joachim (Author)
Format: Article (Journal)
Language:English
Published: Jan 29, 2018
In: eLife
Year: 2018, Volume: 7
ISSN:2050-084X
DOI:10.7554/eLife.32319
Online Access:Verlag, Volltext: https://doi.org/10.7554/eLife.32319
Get full text
Author Notes:Katharina Lust, Joachim Wittbrodt
Description
Summary:Regeneration responses in animals are widespread across phyla. To identify molecular players that confer regenerative capacities to non-regenerative species is of key relevance for basic research and translational approaches. Here, we report a differential response in retinal regeneration between medaka (Oryzias latipes) and zebrafish (Danio rerio). In contrast to zebrafish, medaka Müller glia (olMG) cells behave like progenitors and exhibit a restricted capacity to regenerate the retina. After injury, olMG cells proliferate but fail to self-renew and ultimately only restore photoreceptors. In our injury paradigm, we observed that in contrast to zebrafish, proliferating olMG cells do not maintain sox2 expression. Sustained sox2 expression in olMG cells confers regenerative responses similar to those of zebrafish MG (drMG) cells. We show that a single, cell-autonomous factor reprograms olMG cells and establishes a regeneration-like mode. Our results position medaka as an attractive model to delineate key regeneration factors with translational potential.
Item Description:Gesehen am 29.07.2019
Physical Description:Online Resource
ISSN:2050-084X
DOI:10.7554/eLife.32319