Anti-de Sitter strictly GHC-regular groups which are not lattices

For , we exhibit examples of strictly GHC-regular groups which are not quasi-isometric to the hyperbolic space , nor to any symmetric space. This provides a negative answer to Question 5.2 in a work of Barbot et al. and disproves Conjecture 8.11 of Barbot-Mérigot [Groups Geom. Dyn. 6 (2012), pp. 44...

Full description

Saved in:
Bibliographic Details
Main Authors: Lee, Gye-Seon (Author) , Marquis, Ludovic (Author)
Format: Article (Journal)
Language:English
Published: April 4, 2019
In: Transactions of the American Mathematical Society
Year: 2019, Volume: 372, Issue: 1, Pages: 153-186
ISSN:1088-6850
DOI:10.1090/tran/7530
Online Access:Verlag, Volltext: https://doi.org/10.1090/tran/7530
Verlag, Volltext: https://www.ams.org/tran/2019-372-01/S0002-9947-2019-07530-X/
Get full text
Author Notes:Gye-Seon Lee, Ludovic Marquis
Description
Summary:For , we exhibit examples of strictly GHC-regular groups which are not quasi-isometric to the hyperbolic space , nor to any symmetric space. This provides a negative answer to Question 5.2 in a work of Barbot et al. and disproves Conjecture 8.11 of Barbot-Mérigot [Groups Geom. Dyn. 6 (2012), pp. 441-483].
Item Description:Gesehen am 29.07.2019
Physical Description:Online Resource
ISSN:1088-6850
DOI:10.1090/tran/7530