Anti-de Sitter strictly GHC-regular groups which are not lattices

For , we exhibit examples of strictly GHC-regular groups which are not quasi-isometric to the hyperbolic space , nor to any symmetric space. This provides a negative answer to Question 5.2 in a work of Barbot et al. and disproves Conjecture 8.11 of Barbot-Mérigot [Groups Geom. Dyn. 6 (2012), pp. 44...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lee, Gye-Seon (VerfasserIn) , Marquis, Ludovic (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: April 4, 2019
In: Transactions of the American Mathematical Society
Year: 2019, Jahrgang: 372, Heft: 1, Pages: 153-186
ISSN:1088-6850
DOI:10.1090/tran/7530
Online-Zugang:Verlag, Volltext: https://doi.org/10.1090/tran/7530
Verlag, Volltext: https://www.ams.org/tran/2019-372-01/S0002-9947-2019-07530-X/
Volltext
Verfasserangaben:Gye-Seon Lee, Ludovic Marquis
Beschreibung
Zusammenfassung:For , we exhibit examples of strictly GHC-regular groups which are not quasi-isometric to the hyperbolic space , nor to any symmetric space. This provides a negative answer to Question 5.2 in a work of Barbot et al. and disproves Conjecture 8.11 of Barbot-Mérigot [Groups Geom. Dyn. 6 (2012), pp. 441-483].
Beschreibung:Gesehen am 29.07.2019
Beschreibung:Online Resource
ISSN:1088-6850
DOI:10.1090/tran/7530