Hybrid parallel multimethod hyperheuristic for mixed-integer dynamic optimization problems in computational systems biology

This paper describes and assesses a parallel multimethod hyperheuristic for the solution of complex global optimization problems. In a multimethod hyperheuristic, different metaheuristics cooperate to outperform the results obtained by any of them isolated. The results obtained show that the coopera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gonzalez, Patricia (VerfasserIn) , Argüeso-Alejandro, Pablo (VerfasserIn) , Penas, David R. (VerfasserIn) , Pardo, Xoan C. (VerfasserIn) , Sáez Rodríguez, Julio (VerfasserIn) , Banga, Julio R. (VerfasserIn) , Doallo, Ramón (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 08 May 2019
In: The journal of supercomputing
Year: 2019, Jahrgang: 75, Heft: 7, Pages: 3471-3498
ISSN:1573-0484
DOI:10.1007/s11227-019-02871-0
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1007/s11227-019-02871-0
Verlag, Volltext: https://link.springer.com/article/10.1007/s11227-019-02871-0
Volltext
Verfasserangaben:Patricia González, Pablo Argüeso-Alejandro, David R. Penas, Xoan C. Pardo, Julio Saez-Rodriguez, Julio R. Banga, Ramón Doallo
Beschreibung
Zusammenfassung:This paper describes and assesses a parallel multimethod hyperheuristic for the solution of complex global optimization problems. In a multimethod hyperheuristic, different metaheuristics cooperate to outperform the results obtained by any of them isolated. The results obtained show that the cooperation of individual parallel searches modifies the systemic properties of the hyperheuristic, achieving significant performance improvements versus the sequential and the non-cooperative parallel solutions. Here we present and evaluate a hybrid parallel scheme of the multimethod, using both message-passing (MPI) and shared memory (OpenMP) models. The hybrid parallelization allows to achieve a better trade-off between performance and computational resources, through a compromise between diversity (number of islands) and intensity (number of threads per island). For the performance evaluation, we considered the general problem of reverse engineering nonlinear dynamic models in systems biology, which yields very large mixed-integer dynamic optimization problems. In particular, three very challenging problems from the domain of dynamic modeling of cell signaling were used as case studies. In addition, experiments have been carried out in a local cluster, a large supercomputer and a public cloud, to show the suitability of the proposed solution in different execution platforms.
Beschreibung:Gesehen am 20.08.2019
Beschreibung:Online Resource
ISSN:1573-0484
DOI:10.1007/s11227-019-02871-0